首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
林业   2篇
  6篇
园艺   1篇
  2018年   2篇
  2015年   2篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Clear-cutting followed by mechanical site preparation is the major disturbance influencing nutrient and water fluxes in Fennoscandian boreal forests. The effects of soil harrowing on the fluxes of dissolved organic carbon (DOC), dissolved nitrogen compounds (organic N, NH4+ and NO3) and water soluble phosphorus (PO43−) through a podzolic soil were studied in a clear-cut in eastern Finland for 5 years. The old, mixed coniferous stand was clear-cut and stem only harvested in 1996 followed by soil harrowing in 1998 and planting in June 1999. Zero-tension lysimeters were used to collect soil water from below different soil horizons in the three types of microsites that resulted from site preparation treatment: low ridges (25% of clear-cut area), shallow furrows (30%) and the undisturbed soil (45%). After soil harrowing, the leaching of DOC, N and P from below the B-horizon increased compared to pre-treatment levels. However, the increases were short-lasting; 1–2 years for inorganic N and P, and 5 years for DOC and organic N. The highest concentrations were associated with the ridges and lowest with the furrows, reflecting the differences in amount of organic matter present in each microsite type and, for N, to enhanced mineralization and nitrification. Leaching from below the B-horizon over the 5 years following soil harrowing for the whole clear-cut area was 36.5 kg ha−1 for DOC, 0.88 kg ha−1 for NH4-N, 0.46 kg ha−1 for NO3-N, 1.24 kg ha−1 for organic N and 0.09 kg ha−1 for PO4-P. Site preparation increased temporarily the risk for nutrient leaching into watercourses and groundwater from the clear-cut area but soil fertility was not affected since the leached amounts remained small. The main reasons for the observed low leaching values were the rapid recovery of ground vegetation and low N deposition loads.  相似文献   
2.
3.
Significant amounts of organic carbon (C) and nitrogen (N) are accumulated in soil in boreal forests. However, increased concern has been shown regarding the negative impacts of forestry operations on both the C sequestration and N stocks in soil. Changes in the C and N stocks in woody debris, forest floor and mineral soil (0–20 cm) were studied in Eastern Finland for 10 years after stem‐only clear‐cutting followed by soil harrowing. Samples were taken from the uncut forest and from the different microsites formed by the harrowing (ridges, furrows and undisturbed areas). Carbon and N from logging residues were not incorporated into the forest floor or mineral soil stocks to any great extent. After 5 years the C stock above the mineral soil was smaller (< 20%) in the treated area than in the uncut forest and after 10 years it was < 50% smaller. The corresponding N stock was marginally larger (< 5%) after 5 years, but smaller (< 20%) after 10 years. In the mineral soil there were no changes; only the furrows lost C and N when compared with the other microsites, but not when compared with the forest. Harrowing increased the spatial variation in the forest floor C and N stocks. The comparison of the N losses from the soil and logging residues and woody debris with the leaching losses, the amounts utilized by the regenerating vegetation or estimated to be immobilized by the stumps at the same site indicated that N which remained after the clear‐cutting was retained at the site. For a full understanding of the impact of such a disturbance on stocks at a site all significant fluxes and stocks would need to be monitored.  相似文献   
4.
Terrestrial export of dissolved organic carbon (DOC) to watercourses has increased in boreal zone. Effect of decomposing material and soil food webs on the release rate and quality of DOC are poorly known. We quantified carbon (C) release in CO2, and DOC in different molecular weights from the most common organic soils in boreal zone; and explored the effect of soil type and enchytraeid worms on the release rates. Two types of mor and four types of peat were incubated in laboratory with and without enchytraeid worms for 154 days at +?15 °C. Carbon was mostly released as CO2; DOC contributed to 2–9% of C release. The share of DOC was higher in peat than in mor. The release rate of CO2 was three times higher in mor than in highly decomposed peat. Enchytraeids enhanced the release of CO2 by 31–43% and of DOC by 46–77% in mor. High molecular weight fraction dominated the DOC release. Upscaling the laboratory results into catchment level allowed us to conclude that peatlands are the main source of DOC, low molecular weight DOC originates close to watercourse, and that enchytraeids substantially influence DOC leaching to watercourse and ultimately to aquatic CO2 emissions.  相似文献   
5.
A recent study on nitrogen (N) and phosphorus (P) exports from drained peatland forests reported increasing concentrations over long time since their initial drainage. Concurrently, some other studies have suggested decreasing trends from drained peatland forests, particularly for P. To evaluate these contradictory findings, we re-analyzed past data and reviewed the literature related to temporal N and P concentration trends in runoff from drained peatland forests. Review of literature indicated that decreasing trends are found particularly in sites where initial P concentrations are high (>?50 μg P l?1), plausibly because of relatively recent fertilization and drainage operations. Decreasing N trends have been found in sites where ditch cleaning temporarily decreased concentrations. Increasing N trends have occurred in sites, where initial concentrations have been low, close to the levels found in pristine peatlands. Complementing past published data with additional data from sites with no recent forestry operations indicated that N concentrations correlated positively with drainage age (years since initial drainage), percentage of drained peatlands in the catchment (drainage proportion), and southern location of the study site. P concentrations correlated most strongly with drainage age. Our study indicated that four factors, in particular, need to be considered when interpreting nutrient concentration trends in runoff from drained peatlands: 1) management history, 2) drainage age, 3) drainage proportion, and 4) site location. Our results supported earlier conclusions in that the estimates which ignore the legacy effect of drainage remarkably underestimate the true impact of forestry on water courses in intensively drained regions.  相似文献   
6.
The impact of forest management (clear-cutting and site preparation) on stream hydrology has been studied in five small catchments in eastern Finland from 1991 and on groundwater levels and quality from 1994. The period 1992–1996 was a calibration period and in the autumn of 1996, 10% and 30% of the area of two of these catchments were clear-cut according to the forest management plan. Regeneration was carried out by disc-plowing in the autumn of 1998 and planting with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in the spring of 1999. The depth and quality of groundwater was monitored with four to nine groundwater wells installed in each catchment. There were 32 wells in all, 16 on upland mineral soils and 16 on peatlands (the perforated part of the pipe was totally put into the underlying mineral soil at eight sites). Sampling was made monthly during spring (March–May) and autumn (November–December) and bimonthly during summer (June–October). The samples were chemically analyzed for pH, electrical conductivity, and concentrations of total P and Fe (before filtration), and total N, NO3-N, NH4+-N, total P, PO43−-P, SO42−-S, Ca2+, Mg2+, K+, Na+, Mn, Zn, Fe, Al3+, Cl (after filtration through 0.45 μm membrane filter). Data collected until the end of 2001 are reported. Groundwater was found in the down-slope wells in lower-lying areas, but not in those installed on the slopes with a thin (1–2 m) soil layer. Clear-cutting did not significantly affect groundwater levels in the wells. Nitrate N concentrations increased from 0.03 mg L−1 level after clear-cutting and again after site preparation in the wells on upland soils and peatlands receiving water from the managed parts of the catchment. In one well at the lower edge of the managed area NO3-N concentrations reached 1–1.4 mg L−1 in 2001 (fifth year after clear-cutting, third after disc-plowing), but mean concentrations remained <0.3 mg L−1. Chloride concentrations also increased (50–100%) after treatments but the concentrations of other solutes showed no significant effect of treatment. It was concluded that changes in groundwater quality and quantity related to the clear-cutting were small and did not represent a danger to water quality or quantity.  相似文献   
7.
Piirainen  S.  Finér  L.  Starr  M. 《Water, air, and soil pollution》1998,105(1-2):165-174
Nitrogen deposition, leaching, and retention were monitored in a mature spruce (Picea abies Karsten) dominated mixed boreal forest in eastern Finland. Bulk precipitation, throughfall, stemflow, and percolation through the podzolic soil profile were monitored from 1993 to 1996. Mean annual bulk deposition of total N was 3.83 kg ha-1, of which 33% was NH4 +, 26% was NO3 - , and 41% was organic N. Throughfall+stemflow flux of total N was 2.93 kg ha-1 yr-1. Sixty-four % of NH4 + and 38% of NO3 - in bulk precipitation was retained by tre three canopy. Organic N was released (0.27 kg ha-1 yr-1) from the tree canopy. Nitrate-N was retained and organic N was leached as the water passed through the ground vegetation and soil O-horizon. Ammonium-N and organic N were retained mainly in the E-horizon. The output of total N from the E-horizon was only 5% of the total N deposition in the forest stand during the study period and it was mainly as organic N. The output of inorganic N forms from under B-horizon was seasonal and occurred mainly at spring snowmelt.  相似文献   
8.
9.
Monthly fluxes of sulphate (SO4 2-) and base cations(Ca2+, Mg2+, K+) were studied from 1993 to 1996 as precipitation passed through forest vegetation and surfacesoil layers in an area receiving low and declining levels of atmospheric sulphate pollution. The canopy was dominated by mature Norway spruce (Picea abies Karsten) and the soilwas a podzol developed on glacial till material. The mean annual bulk deposition of SO4 2- collected in the open was 136 molc ha-1 and that of Ca2+, Mg2+ and K+ was 44, 11 and 25 molc ha-1, respectively. The annual total throughfall deposition of SO4 2- was 318 molc ha-1 and that of Ca2+, Mg2+ and K+ was 151, 64 and 181 molcha-1, respectively. Sulphate was the dominant anion accompanying the base cations leached from the canopy. More than half (58%) of the annual total throughfall deposition ofSO4 2- was retained by the O-horizon and only 15% leached from below the B-horizon. The annual leaching of Ca2+, Mg2+ and K+ from below the B-horizon was14, 25 and 9% of the annual total throughfall deposition, respectively. The transport of base cations through the soil was predominantely countered by SO4 2- anions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号