首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
农学   1篇
  3篇
综合类   1篇
农作物   1篇
水产渔业   1篇
畜牧兽医   2篇
园艺   2篇
植物保护   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Tropical Animal Health and Production - In the present study, the appropriateness of five non-linear mixed growth curve models was studied to describe body weight growth of Sirohi male and female...  相似文献   
2.

For effective varietal improvement of horticultural crops peach (Prunus persica) and nectarine (Prunus persica var. nucipersica), information about their population structure and genetic relatedness plays an important role. In this study we used retrotransposon-based markers (iPBS) to estimate the genetic diversity and population structure of 48 peach and nectarine genotypes from various distinct geographical regions of Punjab and Khyber Pakhtunkhwa, Pakistan. A total of 461 alleles were identified from PCR amplicons derived from nine iPBS primer pairs with an average of 8.5 alleles/locus. Among all four groups the genotypes collected from Swat and Hunza had the highest and the lowest expected heterozygosity, unbiased expected heterozygosity and Shannon’s information index, respectively. We constructed a Neighbour-Joining dendrogram and performed principal coordinate analysis based on the distance matrices, and both forms of analysis grouped the 48 genotypes into two distinct clusters. The STRUCTURE software distributed the forty-eight genotypes into two main populations (k?=?2) indicating a low diversity between genotypes collected from Chakwal, Swat, Mansehra and Hunza.

  相似文献   
3.
4.
Priyadarshani  S. V. G. N.  Hu  Bingyan  Li  Weimin  Ali  Hina  Jia  Haifeng  Zhao  Lihua  Ojolo  Simon Peter  Azam  Syed Muhammad  Xiong  Junjie  Yan  Maokai  ur Rahman  Zia  Wu  Qingsong  Qin  Yuan 《Plant methods》2018,14(1):1-11
Background

Seed viability monitoring is very important in ex situ germplasm preservation to detect germplasm deterioration. This requires seed-, time- and labor- saving methods with high precision to assess seed germination as viability. Although the current non-invasive, rapid, sensing methods (NRSs) are time- and labor-saving, they lack the precision and simplicity which are the virtues of traditional germination. Moreover, they consume a considerable amount of seeds to adjust sensed signals to germination percentage, which disregards the seed-saving objective. This becomes particularly severe for rare or endangered species whose seeds are already scarce. Here we propose a new method that is precise, low-invasive, simple, and quick, which involves analyzing the pattern of dehiscence (seed coat rupture), followed by embryonic protrusion.

Results

Dehiscence proved simple to identify. After the trial of 20 treatments from 3 rice varieties, we recognized that dehiscence percentage at the 48th hour of germination (D(48)) correlates significantly with germination rate for tested seed lots. In addition, we found that the final germination percentage corresponded to D(48) plus 5. More than 70% of the seeds survived post-dehiscence desiccation for storage. Hydrogen peroxide (1 mM) as the solution for imbibition could further improve the survival. The method also worked quicker than tetrazolium which is honored as a fast, traditional method, in detecting less vigorous but viable seeds.

Conclusion

We demonstrated the comprehensive virtues of dehiscence method in assessing rice seed: it is more precise and easier to use than NRSs and is faster and more seed-saving than traditional methods. We anticipate modifications including artificial intelligence to extend our method to increasingly diverse circumstances and species.

  相似文献   
5.
6.
Two vermicompost treatments providing 45 (V1) and 90 (V2) kg P ha?1 and mycorrhizae (M) inoculation were evaluated alone and in combinations for wheat (Triticum aestivum L.) growth and soil fertility status. The treatments included; the Control, nitrogen (N): dipotassium oxide (K2O) as basal dose (BD; 120:60 kg ha?1), N: phosphorus pentoxide (P2O5): K2O as recommended dose (RD; 120:90:60 kg ha?1), BD+Myccorhiza (BDM), BD+V1 (BDV1), BDM+V1 (BDMV1), BD+V2 (BDV2), and BDM+V2 (BDMV2). Combination of mycorrhizae and vermicompost (BDMV1 and BDMV2) significantly and maximally improved the growth, plant N, phosphorus (P), and micronutrient concentrations over the control, reduced the soil pH by 5 and 6%, increased OM by 25 and 112%, total N by 41%, and extractable P up to 200% while the extent of improvement was directly related to the content of added vermicompost. Results indicated that vermicompost at either level synergistically affected the mycorrhizae in plant nutrition as well as improved soil fertility status and soil chemical properties.  相似文献   
7.
8.
DNA markers in chickpea, targetting resistance genes for different races of Fusarium oxysporum f.sp. ciceris (Foc), have been identified in chickpea, but validation of these markers is essential for effective use in resistance breeding. In view of this, different simple sequence repeats (SSR) markers were analysed in Pakistani germplasm including induced mutants and some local lines. Most of the SSR markers showed good correlation with phenotypic evaluation of genotypes to different races of Foc and may be used effectively in resistance breeding, except those markers for race 3. Markers for race 3 showed deviations from phenotypic data and the reason might be that race 3 is actually Fusarium proliferatum as reported recently and resistance to this race might involve some other major resistance genes. Poor correlation of markers with foc-3 on LG2 in our study and a recent report of independent segregation of foc-2 and foc-3 in near isogenic lines suggested that linkage distances among different resistance genes need further investigation. Moreover three Pakistani mutant lines (97477, CM444/92 and CM368/93) depicted high levels of resistance to Foc races and can be deployed as a valuable source in resistance breeding programmes.  相似文献   
9.
Chickpea (Cicer arietinum L.) is an important legume crop as a protein source across the world. It is mostly grown on arid and marginal lands where it faces drought stress at different growth stages. Drought stress exerts drastic effects on nutrient uptake, hinders the nodule formation and adversely affects yield and yield components. Generally drought at any growth stage and organizational level is responsible for reduction in economic yield. Significant variability in chickpea germplasm is present on the basis of responses to drought stress in the form of drought escape, drought avoidance and drought tolerance; these mechanisms prevent chickpea crop from harmful effects of drought. Improvement in chickpea germplasm against drought stress could be made by using several breeding approaches, that is introduction, hybridization, mutation breeding, marker‐assisted breeding and omic techniques. These breeding approaches, especially marker‐assisted breeding and omics, are further strengthened with the availability of the chickpea genome sequence. This review highlighted the significance, status and advances in different breeding strategies for improvement of drought tolerance in chickpea.  相似文献   
10.
Tropical Animal Health and Production - Hemorrhagic septicemia is a fatal disease of cattle and buffalo all over the world including Pakistan and it causes heavy economic losses every year. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号