首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2篇
园艺   2篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   
2.
Protected areas are the most important tool for the conservation of biodiversity. However, many species are area-demanding and their populations seldom meet their space requirements in reserves. In this context, the unprotected exterior becomes an important part of their home range, and variations in habitat quality of the surroundings of a protected area might affect the dynamics of populations. Using a spatially explicit simulation model, we studied the effect of the surrounding landscape of a protected area on the density and persistence of a predator population inhabiting inside the reserve in different conditions of environmental variability. We simulated individuals of a predator population, their herbivorous prey and a vegetative substrate in a landscape comprised of a square protected area and different types of habitat quality outside the reserve. We studied the combination of three substrate qualities of protected area (inside) with three of the landscape context and three levels of variability of productivity. Our results showed that there were strong effects of both the relative quality of the surrounding landscape and of the environmental variability on the density and persistence of the simulated population inside the protected area. More importantly, we showed that complex patterns emerge when spatial heterogeneity and temporal variability interact with population dynamics. Specifically, under high environmental variability, when the protected area had a high habitat quality, the highest population persistence was not attained when the exterior was also of high quality, but when the surroundings had an intermediate quality. The latter result suggests that, under the mentioned conditions, small enhancements in the quality of the matrix may have, for some species, better effects on increasing persistence in small reserves than large and costly enhancements.  相似文献   
3.
Plantation clearcuts represent an important habitat for many open-area wildlife species – including conservation-concern species – in landscapes dominated by industrial forests. However, due to the ephemeral nature of clearcuts, species using this type of environment face a “shifting mosaic” in which their ability to successfully relocate to another habitat patch may play a crucial role in the species’ persistence in the landscape. Although several studies have shown a positive effect of patch size on the persistence of open-habitat species, forest clearcutting represents a special case in which, on average, larger patches also tend to be more isolated from each other, likely creating a trade-off between area and isolation effects. We developed an individual-based spatially-explicit model to test the effect of clearcut size (a critical management variable in plantation forestry) on the persistence of generic early-successional wildlife species in a landscape dominated by forest plantations. We simulated a landscape covered with a plantation harvested regularly over a 25-year rotation and different versions of a wildlife population whose habitat was constituted only by 1–4 year-old patches. We observed that when the species could perceive the attributes of the neighboring pixels persistence time was higher at intermediate clearcut sizes agreeing with our prediction. Also, species with a high dispersal capacity were less limited by connectivity and reached their maximum persistence at higher clearcut sizes. Results also showed a positive effect of habitat lifetime on persistence. Our results suggest large clearcuts may be incompatible with the conservation of many early-successional vertebrates that have limited dispersal capacity, unless additional conservation measures, such as the use of corridors or special spatial arrangement of clearcuts, are taken to overcome the lack of connectivity.  相似文献   
4.
An individual-based simulation model was used to study the effect of the relative location of food and nest sites in the landscape on the relationship between the breeding habitat patch size and bird population density. The model predicted that when both food and nest sites are located exclusively in the breeding habitat patches, larger patches tend to harbor higher population densities. But when food starts to be added to the `matrix' habitat and taken out of the breeding habitat the advantageous effect of larger patches diminishes and eventually the trend reverses, with small patches having higher population densities. This pattern arises from the combined effect of the existence of an extended foraging area around patches and an intrinsic advantage of large habitat patches associated with the concentration of food resources and potential colonizers. The effects of interspecific interactions and the management implications of the model are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号