首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
林业   1篇
园艺   3篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Context

Despite continued forest cover losses in many parts of the world, Atlantic Forest, one of the largest of the Americas, is increasing in some locations. Economic factors are suggested as causes of forest gain, while enforcement has reduced deforestation.

Objectives

We examine three aspects of this issue: the relative importance of biophysical versus anthropogenic factors in driving forest dynamics; role of forest mean patch age influencing areas targeted for losses; and what future forest mean patch age mosaic we can expect (more forest cover and full forest maturity?).

Methods

Three land cover maps from 1990, 2000 and 2010, were used in the study. We selected six biophysical and six anthropogenic spatial determinants to analyze by means of weights of evidence, using Dinamica software.

Results

Results show that forest regrowth is influenced by multiple factors, working in synergy. Biophysical variables are related to forest gain while anthropogenic are associated with loss. Clear patterns of regrowth on pasture and sugarcane plantations occurred, especially near rivers and forest patches, on steeper slopes and with sufficient rainfall. Forest loss has targeted both older and newer forests. Future projections reveal forest gain in a slow pace, followed by specific ecosystem service losses, due to continuous trends of older mature forest loss.

Conclusions

Regrowth is linked to land abandonment, and to neighboring environmental conditions. It is important to question which mechanisms will guarantee and potentiate new regrowth, thus contributing to landscape restoration and reestablishment of ecosystem services in the Atlantic Forest.
  相似文献   
2.
Forests, through the regulation of regional water balances, provide a number of ecosystem services, including water for agriculture, hydroelectric power generation, navigation, industry, fisheries, and human consumption. Large-scale deforestation triggers complex non-linear interactions between the atmosphere and biosphere, which may impair such important ecosystem services. This is the case for the Southwestern Amazon, where three important river basins (Juruá, Purus, and Madeira) are undergoing significant land-use changes. Here, we investigate the potential impacts of deforestation throughout the Amazon on the seasonal and annual water balances of these river basins using coupled climatic and hydrologic models under several deforestation scenarios. Simulations without climate response to deforestation show an increase in river discharge proportional to the area deforested in each basin, whereas those with climate response produce progressive reductions in mean annual precipitation over all three basins. In this case, deforestation decreases the mean annual discharge of the Juruá and Purus rivers, but increases that of the Madeira, because the deforestation-induced reduction in evapotranspiration is large enough to increase runoff and thus offset the reduction in precipitation. The effects of Amazon deforestation on river discharge are scale-dependent and vary across and within river basins. Reduction in precipitation due to deforestation is most severe at the end of the dry season. As a result, deforestation increases the dry-season length and the seasonal amplitude of water flow. These effects may aggravate the economic losses from large droughts and floods, such as those experienced in recent years (2005, 2010 and 2009, 2012, respectively).  相似文献   
3.
The dynamics of the Atlantic Rainforest loss and recovery are still not fully understood despite its long history of human occupation. In this study, we investigated changes in an Atlantic Rainforest region due to major biophysical and human proximate causes. First, we modeled land-cover and land-use changes from 1962 to 2000, including deforestation and forest regrowth, and thereby simulated future landscape trajectories to assess their possible effects on the conservation of forest species of the Ibiúna Plateau, a region located in Southeastern Brazil within the Atlantic Rainforest biome. We modeled four scenarios (status quo, random, lawenforcement, and land-use intensification) and simulated their resulting landscape trajectories for the year 2019 using DINAMICA. The landscape dynamics in the study region were particularly intense. During the first period of 1962–1981, the rate of forest regrowth (3% year−1) was greater than the rate of deforestation (2% year−1), whereas in the latter period of 1981–2000, increasing urbanization and the spreading of rural establishments resulted in more deforestation (2.9% year−1) than regrowth (1% year−1). These dynamics imprinted a heterogeneous landscape, leading to the predominance of progressively younger secondary forests with increasingly less capacity of hosting sensitive forest species. The influence of proximate causes on the dynamics of deforestation and forest regrowth showed consistent patterns, such as higher forest regrowth rates near rivers, on steep slopes and far from dirt roads, whereas losses in young secondary vegetation and forest were far from rivers, on gentle slopes and near urban areas. Of the modeled scenarios, only the law enforcement scenario may lead to the recovery of a network of interconnected forest patches, suggesting that simply the enforcement of current forest laws, which prohibit deforestation on unsuitable agricultural areas and along river margins and establish a minimum of 20% of forest remnant per rural property, may effectively favor forest species conservation in the short term (two decades) without the need of any forest restoration effort.  相似文献   
4.
Understory fire modeling is a key tool to investigate the cornerstone concept of landscape ecology, i.e. how ecological processes relate to landscape structure and dynamics. Within this context, we developed FISC??a model that simulates fire ignition and spread and its effects on the forest carbon balance. FISC is dynamically coupled to a land-use change model to simulate fire regimes on the Amazonian landscapes of the Xingu Headwaters under deforestation, climate change, and land-use management scenarios. FISC incorporates a stochastic cellular automata approach to simulate fire spread across agricultural and forested lands. CARLUC, nested in FISC, simulates fuel dynamics, forest regrowth, and carbon emissions. Simulations of fire regimes under modeled scenarios revealed that the major current and future driver of understory fires is forest fragmentation rather than climate change. Fire intensity proved closely related to the landscape structure of the remaining forest. While climate change may increase the percentage of forest burned outside protected areas by 30% over the next four decades, deforestation alone may double it. Nevertheless, a scenario of forest recovery and better land-use management would abate fire intensity by 18% even in the face of climate change. Over this time period, the total carbon balance of the Xingu??s forests varies from an average net sink of 1.6?ton?ha?1?year?1 in the absence of climate change, fire and deforestation to a source of ?0.1?ton?ha?1?year?1 in a scenario that incorporates these three processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号