首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  3篇
综合类   1篇
畜牧兽医   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
This research studied the effect of biochar addition before upland rice planting, followed by sugarcane cropping, on soil fertility (nitrogen mineralization, β-glucosidase and urease activities), and mitigating greenhouse gases emission at sugarcane harvest. An incubation experiment was designed utilizing soil samples taken from a sugarcane field at final harvest with treatments, (i) Control, with no biochar or fertilizer application to upland rice (ii) CF, with fertilizer application at recommended rates; (iii) BC1, with biochar addition at the rate of 3.125?Mg ha?1 + CF; (iv) BC2, with biochar addition at the rate of 6.25?Mg ha?1 + CF. Results showed that, at the last sampling dates, soil enzyme activities of the biochar treatments were significantly greater than those of the control treatment. The lowest cumulative carbon dioxide and nitrous oxide emission was observed in the BC2 treatment. Thus, the BC2 treatment could increase both soil fertility and mitigate global warming.  相似文献   
2.
Veterinary Research Communications - Tick-borne viruses and bacteria that can cause diseases of animals and humans have high impact and are of concern as significant threats to human health...  相似文献   
3.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   
4.
The regulative effect of long-term application of biochemically contrasting organic inputs such as rice straw (4.7 g?N; 6.5 g polyphenols), groundnut stover (22.8 g?N; 12.9 g polyphenols) and leaf litter of tamarind (13.6 g?N; 31.5 g polyphenols) and dipterocarp (5.7 g?N; 64.9 g polyphenols) on fungal decomposers was studied in a tropical sandy soil. Fungal decomposers were assayed by 18S rRNA gene-based community profiling and were combined with measurements of selected enzyme activities. Dipterocarp residue application depressed fungal abundance, but promoted specialized decomposers (e.g., Aspergillus fumigatus and Anguillospora longissima) with increases in polyphenol oxidase activity. The degree of functional redundancy for invertase and B-glucosidase activities was induced after the addition of easily decomposable rice straw and groundnut stover. Higher N availability in the tamarind treatment increased, in contrast to low N rice straw, fungal abundance (i.e., Fusarium oxysporum, Myceliopthora thermophila, and Aspergillus versicolor) and promoted invertase and B-glucosidase activities, while peroxidase activity was depressed. In addition, N availability seemed to regulate not only decomposing soil fungi, but also the abundance of protozoan decomposers whose actual contribution to N turnover in soils is still poorly understood. Prospective research should thus consider apart from studying decomposing fungi also protozoa and bacteria to better understand the microbially mediated degradation of complex organic materials in soils.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号