首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
畜牧兽医   2篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
It is well documented that heat stress (HS) causes subfertility in dairy cows. However, during the last ten years we have been observing that, under high temperature–humidity index (THI ≥ 75), despite the overall reduced fertility, some cows conceive at the first artificial insemination (AI). Here, we examined distinctive features of cows with conserved fertility under severe HS. From the databases of three herds, 167 lactating Holstein cows were selected; group TT cows (n = 57) conceived in the previous summer (THI ≥ 75) at the 1st AI, and group TS (n = 110) failed to conceive at the same period after at least 2 consecutive AIs. The animals calved in spring, and in August, blood samples were collected during a hot day (THI ≥ 81) for the determination of cortisol and HSP70 concentrations. In one farm, the validity of fertility data of the previous year was re-examined. In 28 cows from group TT and in 39 cows from group TS, the conception rate was examined during July and August. In 6 cows from each group (TT and TS) the oestrous cycles were synchronized, ovulation was induced with GnRH (THI = 80), and the concentration of the pre-ovulatory LH surge was determined in 9 blood samples. The progesterone concentration in the ensuing cycle was determined in blood samples collected every other day. Overall, cortisol and HSP70 were significantly lower in TT group compared to TS. More (p < .05) animals from group TT conceived at the first AI compared with those from group TS. The induced pre-ovulatory LH surge peaked at higher level (p < .002) in group TT than in group TS, while no difference was recorded among groups either in mean progesterone concentrations or in the duration of the ensuing oestrous cycle. These results are highly suggestive that thermotolerance in some dairy cows is an inherent characteristic, warranting further genetic investigation.  相似文献   
2.
In two experiments, we studied (a) the changes of LH secretion in heifers under different feeding schedules and (b) total ghrelin concentration at oestrus in cows and heifers. In experiment one, synchronized heifers were allocated in three groups (R, regularly fed controls; F, fasted; and F‐F fasted‐fed). One day after the completion of the oestrous induction protocol, group F and F‐F animals stayed without feed for 24 hr; thereafter, feed was provided to R and F‐F cattle; 2 hr later, GnRH was administered to all animals. Blood samples were collected for ghrelin, progesterone, LH and cortisol concentrations. Fasting caused increased ghrelin concentrations in groups F and F‐F, while in response to GnRH, LH surge was significantly attenuated in groups F and F‐F compared to R. In experiment 2, lactating cows and heifers were used. On day 9 of a synchronized cycle, PGF2α was administered, and blood samples were collected twice daily until the third day after oestrus and analysed for progesterone, estradiol, ghrelin, glucose and BHBA concentrations. No difference was recorded between groups in steroids and BHBA concentrations. In comparison to mid‐luteal values, ghrelin concentrations significantly increased at perioestrual period in cows, but not in heifers. This study provides evidence that starving‐induced elevated ghrelin concentrations can have suppressing effect on LH secretion, even after ghrelin's restoration to basal values and that during oestrus, ghrelin secretion is differently regulated in cows and heifers, likely being independent from oestradiol concentrations. Further research is required to identify the determining factors that drive the different regulation of ghrelin secretion in cows and heifers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号