首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
畜牧兽医   2篇
  2019年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This study investigated the association between pre-breeding blood urea nitrogen (BUN) concentration and reproductive performance of beef heifers within different management systems in South Africa. Bonsmara heifers (n?=?369) from five herds with different estimated levels of nitrogen intake during the month prior to the commencement of the breeding season were sampled in November and December 2010 to determine BUN concentrations. Body mass, age, body condition score (BCS) and reproductive tract score (RTS) were recorded at study enrolment. Trans-rectal ultrasound and/or palpation was performed 4–8 weeks after a 3-month breeding season to estimate the stage of pregnancy. Days to pregnancy (DTP) was defined as the number of days from the start of the breeding season until the estimated conception date. Logistic regression and Cox proportional hazards survival analysis were performed to estimate the association of pre-breeding BUN concentration with subsequent pregnancy and DTP, respectively. After stratifying for herd and adjusting for age, heifers with relatively higher pre-breeding BUN concentration took longer to become pregnant when compared to those with relatively lower BUN concentration (P?=?0.011). In the herd with the highest estimated nitrogen intake (n?=?143), heifers with relatively higher BUN were less likely to become pregnant (P?=?0.013) and if they did, it was only later during the breeding season (P?=?0.017), after adjusting for body mass. These associations were not present in the herd (n?=?106) with the lowest estimated nitrogen intake (P?>?0.500). It is concluded that Bonsmara heifers with relatively higher pre-breeding BUN concentration, might be at a disadvantage because of this negative impact on reproductive performance, particularly when the production system includes high levels of nitrogen intake.  相似文献   
2.

The objective of this study was to determine if individual beef cows in a herd have an inherent ability to maintain their blood urea nitrogen (BUN) concentration when exposed to different levels of dietary nitrogen supplementation. Ten Hereford and 12 Nguni cows, aged between 2 and 16 years, were utilized in two crossover experiments. In the first experiment, cows were exposed to two diets: a balanced diet with a crude protein (CP) level of 7.9% and a modified diet with a CP level of 14%, formulated by adding 20 kg of feed grade urea per ton of the balanced diet. At the end of the first crossover experiment, cows received the balanced diet for 1 week. The second component utilized the same cows wherein they were fed the balanced diet in addition to another modified diet containing only 4.4% CP. Blood urea nitrogen concentration was measured 22 times (twice weekly) from each cow during both components of the study. A linear mixed-effects model was used to assess whether baseline BUN concentration (measured 1 week before onset of the study) was predictive of subsequent BUN concentration in individual cows. Breed, cow age, body condition score, and body mass were also evaluated for their effects on BUN concentrations. Albumin, beta hydroxybutyric acid (BHBA), glucose, and total serum protein (TSP) were compared between diets within each breed. Baseline BUN concentration was a significant predictor of subsequent BUN concentration in individual cows (P = 0.004) when evaluated over both components of the study. Breed (P = 0.033), the preceding diet (P < 0.001), current diet (P < 0.001), and the week during which sampling was performed (P < 0.001) were also associated with BUN concentration. Results suggest that beef cattle (within a herd) have an inherent ability to maintain their BUN concentration despite fluctuations in levels of available dietary nitrogen.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号