首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
林业   13篇
农学   12篇
  21篇
综合类   18篇
农作物   13篇
水产渔业   15篇
畜牧兽医   19篇
园艺   6篇
植物保护   25篇
  2023年   4篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   19篇
  2012年   4篇
  2011年   9篇
  2010年   11篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1969年   2篇
  1968年   3篇
  1966年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
2.
Wild swarms of the long-horned grasshoppers Ruspolia differens (Serville) which are widely harvested for consumption and sale in Africa are seasonal and unsustainable, hence the need for innovative ways of artificially producing the insects. We investigated the development, survival, and reproduction of R. differens in the laboratory on diets mixed with host plants [Digitaria gayana Kunth, Cynodon dactylon (L.) and Megathyrsus maximus Jacq (Poales: Poaceae); Ageratum conyzoides L. (Asterales: Asteraceae)] identified from guts of their wild conspecifics with a view to developing a suitable diet for artificial mass rearing of the edible insect. A standard diet comprising ground black soldier fly, Hermetia illucens L. (Diptera: Startiomyidae) larvae, soybean flour, maize flour, vitamin premix, and ground bones was tested for rearing R. differens as a control against the same ingredients incorporated with individual powders of the different host plants. Whereas R. differens developed more slowly in the diet mixed with D. gayana than in the control diet; its development was faster in the diet mixed with C. dactylon. Mortalities of R. differens in host plant-based diets were 42.5–52.5%, far lower than in the control diet with 71% mortality. The insects raised on the diet mixed with M. maximus laid approximately twice more eggs compared to R. differens fecundities from the rest of the diets. However, inclusion of host plants in the diets had no detectable influence on R. differens adult weight and longevity. These findings support inclusion of specific host plants in artificial diets used for mass rearing of R. differens to enhance its survival, development, and fecundity.  相似文献   
3.
Pressure-assisted thermal processing (PATP) is being widely investigated for processing low acid foods. However, its microbial safety has not been well established and the mechanism of inactivation of pathogens and spores is not well understood. Fourier transform infrared (FT-IR) spectroscopy was used to study some of the biochemical changes in bacterial spores occurring during PATP and thermal processing (TP). Spore suspensions (approximately 10(9) CFU/mL of water) of Clostridium tyrobutyricum, Bacillus sphaericus, and three strains of Bacillus amyloliquefaciens were treated by PATP (121 degrees C and 700 MPa) for 0, 10, 20, and 30 s and TP (121 degrees C) for 0, 10, 20, and 30 s. Treated and untreated spore suspensions were analyzed using FT-IR in the mid-infrared region (4000-800 cm(-1)). Multivariate classification models based on soft independent modeling of class analogy (SIMCA) were developed using second derivative-transformed spectra. The spores could be differentiated up to the strain level due to differences in their biochemical composition, especially dipicolinic acid (DPA) and secondary structure of proteins. During PATP changes in alpha-helix and beta-sheets of secondary protein were evident in the spectral regions 1655 and 1626 cm(-1), respectively. Infrared absorption bands from DPA (1281, 1378, 1440, and 1568 cm(-1)) decreased significantly during the initial stages of PATP, indicating release of DPA. During TP changes were evident in the bands associated with secondary proteins. DPA bands showed little or no change during TP. A correlation was found between the spore's Ca-DPA content and its resistance to PATP. FT-IR spectroscopy could classify different strains of bacterial spores and determine some of the changes occurring during spore inactivation by PATP and TP. Furthermore, this technique shows great promise for rapid screening PATP-resistant bacterial spores.  相似文献   
4.
5.
The effects of root colonization by the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck and Smith on growth, flower and fruit production, and fruit quality were studied in field-grown tomato plants exposed to varying intensities of drought stress. Inoculated (M+) and non-inoculated (M−) tomato seedlings were exposed to varying intensities of drought stress by adjusting irrigation intervals. Mycorrhizal plants had significantly higher uptake of N and P in both roots and shoots regardless of intensities of drought stress. AM inoculation also significantly increased shoot dry matter and the number of flowers and fruits. The fruit yields of M+ plants under severe, moderate, mild drought-stressed conditions were higher than M− plants by 24.7%, 23.1%, 16.2% and 12.3%, respectively. Furthermore, M+ plants produced tomato fruits that contain significantly higher quantities of ascorbic acid and total soluble solids (TSS) than M− plants. Mycorrhizal effects increased with increasing intensity of drought. The overall results suggest that mycorrhizal colonization affects host plant nutritional status, water stratus and growth under field conditions and thereby alters reproductive behaviour, fruit production and quality of fruits under both well-watered and drought-stressed conditions.  相似文献   
6.
The ethyl acetate, acetone and methanol extracts of Wrightia tinctoria bark showed antinociceptive activity on acetic acid-induced writhing test in mice, their effects being comparable to that of acetylsalicylic acid.  相似文献   
7.
The impact of drought conditioning on the ability of eight-week-old jack pine (Pinus banksiana Lamb.) seedlings to withstand drought was assessed. Two progressive cycles of drought conditioning significantly increased the survival of seedlings subjected to a subsequent prolonged drought. The in vivo accumulation of several root membrane proteins during drought conditioning was correlated with an increase in seedling survival. A group of root proteins, ranging in molecular mass from 43 to 47 kDa, increased accumulation during one cycle of drought conditioning and to a lesser extent during two cycles of drought conditioning. The accumulation of several low molecular mass membrane and soluble proteins also increased during drought conditioning, suggesting that these proteins may play an important role in the enhancement of drought tolerance. In vitro translation studies showed a general increase in the abundance of protein products encoded by mRNAs from drought-conditioned seedlings. Although the majority of the in vitro translation products appeared in both control and drought-conditioned seedlings, one mRNA encoding a 15 kDA translated protein was more prominent during the second cycle of drought conditioning.  相似文献   
8.
9.
10.
Unpredictable drought affects growth and yield of dryland cowpea ( Vigna unguiculata [L.] Walp.) during rainy season. With the objective of identifying compensatory growth responses after relief of water stress, pot-grown plants (cv. C-752) were water-stressed at flowering, and physiological responses, short term dry matter partitioning upon relief of water stress, and productivity at maturity were studied. Water stress decreased, to varying degrees, leaf water potential, stomatal conductance, photosynthesis rate and transpiration rate. Recovery in assimilation lagged behind that in water relations. Assimilate supply seemed to be limiting early pod growth upon relief of water stress due to low photosynthesis rate, reduced leaf area per pod, and increased partitioning to leaf expansion. However, later pod growth was not limited by assimilate supply and final dry matter per pod was similar in both non-stressed and stress-affected plant. Cowpea exhibited the following growth responses during pod-fill stage upon relief of water stress: 1. increase in leaf area, 2. shift in dry matter partitioning in favour of leaf expansion, 3. extended green leaf duration, and 4. increase in pod number. These partially compensating physiological responses probably ensure reasonable productivity of dryland cowpea during rainy season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号