首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   35篇
  国内免费   1篇
林业   11篇
农学   14篇
基础科学   10篇
  126篇
综合类   31篇
农作物   10篇
水产渔业   30篇
畜牧兽医   178篇
园艺   9篇
植物保护   33篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   13篇
  2018年   12篇
  2017年   10篇
  2016年   25篇
  2015年   8篇
  2014年   10篇
  2013年   31篇
  2012年   23篇
  2011年   29篇
  2010年   22篇
  2009年   21篇
  2008年   34篇
  2007年   23篇
  2006年   22篇
  2005年   15篇
  2004年   21篇
  2003年   9篇
  2002年   20篇
  2001年   12篇
  2000年   7篇
  1999年   7篇
  1998年   11篇
  1997年   4篇
  1996年   9篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
1.
Organic production of one of the most popular botanical supplements, Echinacea, continues to expand in the U.S. Echinacea seeds typically show a high degree of dormancy that can be broken by ethephon or gibberelic acid (GA), but these methods are currently disallowed in organic production. In order to determine the efficacy of non-chemical seed treatments, we evaluated the effect of varying seed source and supplying light, with and without cold-moist stratification, on seed germination of the three most important medicinal species of Echinacea, E. angustifolia DC, E. purpurea (L) Moench, and E. pallida (Nutt.) Nutt. Treatments included cold-moist stratification under 24 h light, 24 h dark, and 16/8 h light/dark to break seed dormancy. We found that germination was greater in the E. purpurea and E. pallida seeds from a commercial organic seed source compared to a public germplasm source. When seeds were not cold-moist stratified, 16-24 h light increased germination in E. angustifolia only. Echinacea angustifolia, E. purpurea, and E. pallida seeds that were cold-moist stratified under 16-24 h of light for 4 wk had a significantly greater percentage and rate of germination compared to seeds germinated in the dark. Therefore, cold-moist stratification under light conditions is recommended as a method to break seed dormancy and increase germination rates in organic production of Echinacea.  相似文献   
2.
Three-year-old, non-lactating and non-pregnant Merino ewes, raised on pasture under a program of strategic treatment with anthelmintic and found to be extremely resistant to "trickle" infection with Haemonchus contortus, were given single-dose infections with either H. contortus or Trichostrongylus colubriformis or both species together. The purpose was to ascertain the intensity of protective immunity against the 2 parasites in sheep with immunity acquired from a presumably slight exposure to infection. To provide a criterion, some infected ewes were immunosuppressed with corticosteroid, dexamethasone. Untreated ewes were extremely resistant to challenge infection with either 15,000 or 150,000 H. contortus or 15,000 T. colubriformis. Surprisingly, when mixed infection was given, egg counts for H. contortus were significantly elevated compared with infection by that species alone. Antibody to antigens from infective larval and adult H. contortus was measured in serum by enzyme-linked-immunosorbent assay (ELISA) during the course of infection. Serum titres against larval antigens were significantly depressed when infections with either H. contortus or T. colubriformis were permitted by immunosuppression with dexamethasone, whereas those against adult antigen were depressed when infection with T. colubriformis was permitted.  相似文献   
3.
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
5.
We investigated the effects of partial root-zone drying (PRD) applied at different periods on leaf water relations, vegetative development, fruit yield, must and wine quality in wine grapes (Vitis vinifera L. cv. Monastrell) during a 3-year field experiment in order to determine the importance of the timing of PRD application on physiological and agronomical vine response under semiarid conditions. Two irrigation treatments were applied: conventional drip irrigation (CI) and PRD. Both treatments received the same annual water quantity. Each year the PRD treatment was applied at different periods of the growth cycle. In 1999 PRD was applied from veraison to harvest (end July–early September); in 2000 from fruit set to harvest (mid June–early September); and in 2001 PRD from budburst to harvest (mid April–early September). Leaf water relations and gas exchange during the experimental period were not significantly affected by PRD treatment. In 1999 and 2000 there was no significant treatment effect on vegetative development, yield or fruit quality. However, in 2001 (when PRD was applied from budburst to harvest), reproductive and vegetative development was clearly altered in PRD vines. Fruit set percentage and vegetative development (shoot length, pruning weight and primary and lateral leaf area) were significantly increased in PRD vines compared to CI. This resulted in both higher yield (kg per vine) (43%) and water use efficiency (40%) compared to CI vines. Berry number per cluster and cluster weight were also significantly increased in PRD vines. Notwithstanding higher yield in PRD vines and a similar berry size, the must and wine quality was not significantly altered, indicating a higher synthesis and accumulation of photoassimilates and metabolites in the berries of PRD vines. We conclude that there was an positive effect on vegetative and reproductive growth when long-term PRD was applied from the beginning of growing season (budburst), suggesting that early onset of PRD is desirable to intensify PRD response under these semiarid conditions. Nevertheless from these results we need to further investigate the long- and short-term effects of PRD, with moderate water amounts, on vegetative and reproductive development such as flowering and fruit set processes in wine grapes.  相似文献   
6.
Kinetic studies are of great concern for understanding the processes and parameters involved in the sorption of pollutants by soils. Sorption kinetics of imidacloprid and diuron in eight soils of different characteristics, with very low organic carbon content were investigated. Pseudosecond-order kinetic reactions closely correlate with the experimental kinetic (R(2) > 0.98) in all soils. The sorbed amount of diuron was higher than that for imidacloprid. The low OC content of these soils correlated neither with the sorbed amount nor with the kinetic parameters for both pesticides. Imidacloprid sorption was correlated with silt and sand content and cation exchange capacity (CEC); meanwhile for diuron, no correlation was found. Thus, sorption kinetics take place throughout different mechanisms related mainly to the chemical character of the pesticides. Sorption kinetic parameters determined using three of the four models selected (pseudosecond-order kinetic reactions, Elovich equation, and Weber-Morris models) have been shown to be worthy to distinguish the process controlling the sorption kinetic of both pesticides.  相似文献   
7.
The amino acid composition and the physicochemical and functional properties of quinoa protein isolates were evaluated. Protein isolates were prepared from quinoa seed by alkaline solubilization (at pH 9, called Q9, and at pH 11, called Q11) followed by isoelectric precipitation and spray drying. Q9 and Q11 had high levels of essential amino acids, with high levels of lysine. Both isolates showed similar patterns in native/SDS-PAGE and SEM. The pH effect on fluorescence measurements showed decreasing fluorescence intensity and a shift in the maximum of emission of both isolates. Q9 showed an endotherm with a denaturation temperature of 98.1 degrees C and a denaturation enthalpy of 12.7 J/g, while Q11 showed no endotherm. The protein solubility of Q11 was lower than that of Q9 at pH above 5.0 but similar at the pH range 3.0-4.0. The water holding capacity (WHC) was similar in both isolates and was not affected by pH. The water imbibing capacity (WIC) was double for Q11 (3.5 mL of water/g isolate). Analysis of DSC, fluorescence, and solubility data suggests that there is apparently denaturation due to pH. Some differences were found that could be attributed to the extreme pH treatments in protein isolates and the nature of quinoa proteins. Q9 and Q11 can be used as a valuable source of nutrition for infants and children. Q9 may be used as an ingredient in nutritive beverages, and Q11 may be used as an ingredient in sauces, sausages, and soups.  相似文献   
8.
9.
Florida ranks first in citrus production, with nearly 68% of all U.S. citrus growing in the season 2005-2006. Most of the citrus groves are located from central to south Florida, and agricultural irrigation permitting is regulated by three of Florida's five water management districts. Most of the permitting for citrus production in Highlands, Polk and Hillsborough counties is conducted by the Southwest Florida Water Management District (SWFWMD), and quantities are based on the District's AGMOD computer program. In 2003, the SWFWMD implemented new permit criteria so that permitted amounts were more representative of actual water use. This paper compares grower reported citrus irrigation water use in Highlands, Polk and Hillsborough counties from 1994 through 2005 with permitted and theoretical irrigation requirements calculated by a daily water balance. Two different sets of crop coefficients (Kc's) developed for citrus in Florida were compared in the daily soil water balance calculation of theoretical irrigation requirements. The percentage of irrigated area considered in this study ranged from 40 to 60% to simulate a range of grower practices. Meteorological data from two weather stations and additional rainfall information from 50 locations within the three counties was used in the water balance. Missing and error values in the meteorological historical record data were filled with weather generators. The multiannual average water consumption (including cold protection water use) from growers ranged from 243 (Hillsborough) to 406 mm (Highlands) and the multiannual average permitted irrigation requirement (without cold protection) ranged from 295 to 557 mm. The simulated gross irrigation requirements under different scenarios of location-Kc-wetted area were variable but mostly lower than the limits established by the district, except for some scenarios in Polk County, whose maximum simulated irrigation value reached 578 mm year−1. In general, permitted limits recommended by the SWFWMD seem to be reasonable for the actual water use by growers in these counties.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号