首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  3篇
畜牧兽医   1篇
  2014年   1篇
  2013年   3篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
通过观察来自于新疆乌鲁木齐市南山山区的未知性别的天山马鹿种群粪便样本,依粪球形态可分为2类:子弹状、枣核状。子弹状呈短粗型,长宽比较小;枣核状呈细长型,长宽比较大。140份样品中子弹状86份、枣核状54份。通过扩增SRY基因进行分子鉴定知雄性94份、雌性46份。形态分类与实际性别吻合率88.34%,即子弹状为雄性,枣核状为雌性。并以样品长、宽平均值的比值(R)为指标快速聚类,建立了判别方程,统计指出判别结果与实际性别吻合率85.48%。结果提示今后的野外研究可直接利用粪球形态判定天山马鹿性别,长宽比判别方程可作为辅助。  相似文献   
2.
The response of two leguminous plants Alhagi pseudoalhagi and Vigna radiata to seawater salinity was studied over a period of 30 d. The growth of Vigna radiata was markedly and gradually reduced by increasing salinity levels, whereas that of Alhagi pseudoalhagi was promoted at 9.1 and 16.2 dS m-1 salinity but then was slightly reduced at 28.2 dS m-1 salinity. These results indicate that Alhagi pseudoalhagi belongs to the group of halophytic plants. Seawater salinity caused changes in the membrane permeability measured as electrolyte leakage in both plants. Alhagi pseudoalhagi maintained a lower membrane permeability than Vigna radiata. With increasing salinity levels, the membrane permeability decreased in Alhagi pseudoalhagi, whereas, in Vigna radiata it slightly increased at 9.1 dS m-1. The leaf water potential and the osmotic potential decreased in both plants along with the seawater salinity levels. However, the turgor potential and osmotic adjustment in Alhagi pseudoalhagi were maintained at a higher level than in Vigna radiata. The contributions of organic and inorganic solutes to the osmotic adjustment differed: Alhagi pseudoalhagi achieved osmotic adjustment through Cl- and Na+ uptake from the substrate, while the contribution of K+, Ca2+, and organic solutes to the osmotic adjustment was limited. These results suggest that the differences in salt tolerance between Alhagi pseudoalhagi and Vigna radiata can not be due to differences in specific-ion effects, but may be related to some factors involved in membrane permeability and osmotic adjustment.  相似文献   
3.
策勒绿洲-沙漠过渡带风沙活动强度的空间分布特征   总被引:1,自引:1,他引:0  
通过对策勒绿洲-沙漠过渡带及绿洲内部4个不同下垫面2010年11月-2011年10月1年内2m及10m高度的风况及输沙势对比分析,结合过渡带地表实际风沙蚀积变化情况得出结论:沿主风向从流沙前沿到半固定沙地、固定沙地、绿洲内部2m高合成输沙势依次为26.21,1.91,3.44,0.007 4VU,10m高合成输沙势分别为54.37,31.53,28.65,2.40VU,从流沙前沿经半固定沙地、固定沙地到绿洲内部随着地表植被覆盖度的增加及绿洲内部防护林网的防护作用增强,各下垫面风力、输沙势及合成输沙势逐渐减弱,流沙地地表表现为强烈的风蚀,并伴随流动沙丘前移,半固定沙地由于高密度的高大柽柳沙堆影响整体呈现大量的风沙堆积,绿洲边缘固定平沙地由于天然植被覆盖度较好,地表整体呈现轻微的蚀积变化,而在绿洲内部由于多条防护林网防护作用及地表较好的土壤水分条件,绿洲内部很少发生地表风蚀。2m高的输沙势自流沙前沿至绿洲内部较10m高的输沙势降低明显,说明了过渡带近地表的天然植被及绿洲防护林网对近地表风力削弱程度远远大于10m高的地表旷野空间,其具有良好的防风阻沙作用,更能代表近地表的风沙活动强度变化。  相似文献   
4.
Leguminous plant Alhagi pseudoalhagi was subjected to 0 (control), 50, 100, and 200 mM NaCI treatments during a 30 d period to examine the mechanism of tolerance to salinity. Plant dry weight, net CO2 assimilation rate, leaf stomatal conductance, intercellular CO2 concentration, and solute concentration in leaves, stems, and roots were determined. Total plant weight in the 50 mM treatment was 170% of that of the control after 10 d of treatment. Total plant weight was lower in the 100 and 200 mM treatments than in the control. The leaf CO2 assimilation rate was approximately 150% of that of the control in the 50 mM treatment, but was not affected significantly by 100 mM of NaCI, while it was reduced to about 60% of that the control in the 200 mM treatment. Similarly stomatal conductance was consistent with the CO2 assimilation rate regardless of the treatments. Intercellular CO2 concentration was lower in the NaCI-treated plants than in the control. Changes in CO2 assimilation rate due to salinity stress could be mainly associated with stomatal conductance and the carboxylation activity. Although the leaf Na+ concentration increased to 900 mmol kg-1 dry weight in the 200 mM treatment compared to 20 mmol kg-1 in the control, the plants did not die and continued to grow at such a high leaf Na+ concentration. Uptake and transportation rates of Na+, Ca2+, Mg2+, and K+, and the accumulation of N were promoted by 50 mM NaCI. Na+ uptake rate continued to increase in response to external NaCI concentration. However, the uptake and transportation rates of Ca2+, Mg2+, and K+ behaved differently under 100 and 200 mM salt stress. The results suggest that A. pseudoalhagi is markedly tolerant to salinity due mainly to its photosynthetic activity rather than to other physiological characteristics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号