首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2篇
畜牧兽医   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
This experiment was conducted in a glasshouse at the Agricultural and Natural Resources Research Center of Zarghan, Iran, in 2016. Sixteen wheat genotypes were compared under four salinity levels [control, 50, 100, and 150 mM sodium chloride (NaCl)] in terms of grain yield, chlorophyll (SPAD), flag leaf area, Na+/K+ ratio, catalase, and peroxidase activities in a randomized complete block design with three replications. Overall, results indicated that apparently no single parameter or a specific group of parameters could be suggested as factors of the most responsive element to different salinity stress levels. In other words, the tolerance mechanism of wheat genotypes is a complex response of multiple factors as a network path. Furthermore, different salinity levels led to different responses of wheat genotypes, which were detectable by the results of the mean comparison and analysis of variance. These results also proved the influential effects of the genetic background on salinity response and tolerance of wheat genotypes. In addition, antioxidants acting as defense barriers against reactive oxygen species are very important constituents against salinity, since higher antioxidant activity leads to alleviate the oxidative stress caused by salinity. Higher osmolyte concentration regulating the selective uptake of useful ions can prevent excess accumulation of toxic ions, which contribute to salinity stress damages. A high variation related to the measured traits in this study under both normal and salinity stress conditions was achieved, which could be applied in screening and breeding programs for salinity stress tolerance. Moreover, the responses of different genotypes varied regarding the different traits; SU-0129 as a novel genotype has proved to be the best choice for further breeding research based on the overall traits and, in particular, grain yield and tolerance stress index.  相似文献   
3.
Twenty genotypes of wheat resulting from different crossings between some wheat parental lines were compared for salt stress (control and gradually increasing salinity). Ion content in root, shoot, and flag leaves and also the root and shoot dry weights were measured. Based on these results, eight genotypes among the twenty were selected as susceptible, semi-tolerant, and tolerant genotypes for evaluating their biochemical characteristics. Results indicated that concentration of sodium (Na+) and potassium (K+) in shoot, root, and flag leaves of stressed plants were, respectively, higher and lower than that in the non-stressed plants. Overall, salinity stress caused reductions in root and shoot dry weights and relative water content (RWC), but enhancement in pigments content. Concentrations of the total carbohydrate, total protein, and soluble proline were higher in plants under salt stress condition. Salinity stress induced higher production in hydrogen peroxide (H2O2) and malondialdehyde (MDA) and also higher activity of catalase (CAT) and ascorbic peroxidase (APX) as antioxidant enzymes, but lower activity of peroxidase (POD). Genotypes 4s, Arg, and 386dh had generally higher enzymatic activity and other tolerant indices, and hence they can be introduced as tolerant genotypes for more study by the plant breeders. On the other hand, genotype 278s was most susceptible based on the most results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号