首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   57篇
林业   75篇
农学   41篇
基础科学   6篇
  169篇
综合类   33篇
农作物   50篇
水产渔业   121篇
畜牧兽医   353篇
园艺   26篇
植物保护   81篇
  2023年   16篇
  2022年   33篇
  2021年   57篇
  2020年   69篇
  2019年   55篇
  2018年   59篇
  2017年   55篇
  2016年   45篇
  2015年   27篇
  2014年   52篇
  2013年   63篇
  2012年   76篇
  2011年   56篇
  2010年   50篇
  2009年   30篇
  2008年   26篇
  2007年   35篇
  2006年   34篇
  2005年   30篇
  2004年   16篇
  2003年   24篇
  2002年   13篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   3篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1969年   1篇
  1954年   1篇
排序方式: 共有955条查询结果,搜索用时 15 毫秒
1.
2.
So far, rumination has been used as a proxy for monitoring dairy cow health at farm level. However, investigating its genetic aspects as well as its correlation with other important productive traits may turn this management tool into a new informative selection criterion. However, scientific evidences on genetic correlation among rumination time (RT) and milk production and milk composition are still scarce. Therefore, the objective of this study was to estimate the heritability of RT across three lactation phases and its genetic correlation with milk production, milk composition and somatic cell count (SCC). Results of our study showed that heritability for RT was 0.34 and was constant across lactation. The mean genetic correlations between RT and milk production and composition traits were 0.07 (milk production), ?0.07 (protein yield), ?0.31 (fat yield), and ?0.32 (fat/protein ratio). The mean genetic correlation between RT and the SCC was 0.05.  相似文献   
3.
Efficient computing techniques allow the estimation of variance components for virtually any traditional dataset. When genomic information is available, variance components can be estimated using genomic REML (GREML). If only a portion of the animals have genotypes, single-step GREML (ssGREML) is the method of choice. The genomic relationship matrix (G) used in both cases is dense, limiting computations depending on the number of genotyped animals. The algorithm for proven and young (APY) can be used to create a sparse inverse of G (GAPY~-1) with close to linear memory and computing requirements. In ssGREML, the inverse of the realized relationship matrix (H−1) also includes the inverse of the pedigree relationship matrix, which can be dense with a long pedigree, but sparser with short. The main purpose of this study was to investigate whether costs of ssGREML can be reduced using APY with truncated pedigree and phenotypes. We also investigated the impact of truncation on variance components estimation when different numbers of core animals are used in APY. Simulations included 150K animals from 10 generations, with selection. Phenotypes (h2 = 0.3) were available for all animals in generations 1–9. A total of 30K animals in generations 8 and 9, and 15K validation animals in generation 10 were genotyped for 52,890 SNP. Average information REML and ssGREML with G−1 and GAPY~-1 using 1K, 5K, 9K, and 14K core animals were compared. Variance components are impacted when the core group in APY represents the number of eigenvalues explaining a small fraction of the total variation in G. The most time-consuming operation was the inversion of G, with more than 50% of the total time. Next, numerical factorization consumed nearly 30% of the total computing time. On average, a 7% decrease in the computing time for ordering was observed by removing each generation of data. APY can be successfully applied to create the inverse of the genomic relationship matrix used in ssGREML for estimating variance components. To ensure reliable variance component estimation, it is important to use a core size that corresponds to the number of largest eigenvalues explaining around 98% of total variation in G. When APY is used, pedigrees can be truncated to increase the sparsity of H and slightly reduce computing time for ordering and symbolic factorization, with no impact on the estimates.  相似文献   
4.
5.
It is well reported in the scientific literature that pastures can have similar net forage accumulation when managed with contrasting structures. However, we hypothesized that the dynamics of forage accumulation in grazed swards is linked to seasonal-environmental conditions. Marandu palisadegrass (Brachiaria brizantha [Hochst. ex A. Rich.] was used as the forage species model. The experimental treatments were four grazing heights (10, 20, 30 and 40 cm) allocated to experimental units according to a randomized complete block design with four replicates and evaluated throughout four contrasting environmental seasons (summer, autumn, winter–early spring and late spring). Under rainy and warm periods, greater net forage accumulation was observed in pastures maintained taller; on the contrary, during the mild and dry periods, net forage accumulation rate reduced as grazing height increased. Such patterns of responses were related to compensations between tiller population density and tissues flows during summer and late spring and the reduced capacity of taller canopies to compensate lower population with greater growth rates during autumn and winter–early spring. Grazed swards changed their patterns of forage growth as they transitioned from favourable to more abiotic stressful conditions, suggesting that seasonal adjustments in grazing intensities are necessary in order to maximize forage production.  相似文献   
6.
The effects of water and salt stress on rate of germination and seedling growth were investigated under laboratory conditions in 46 soya bean genotypes from Central-West region of Brazil to verify how these stresses may limit crop establishment during the initial growth stage and also to identify the most tolerant genotypes to drought and salinity. Mild water and salt stresses were imposed by seed exposure to –0.20 MPa iso-osmotic solutions with polyethylene glycol—PEG 6000 (119.57 g/L) or NaCl (2.357 g/L) for 12 days at 25°C. The germination percentage, seedling length and seedling dry matter were measured, and then, salt or drought tolerance indexes were calculated. The “NS 5909 RG,” “NS 7000 IPRO,” “NS 7338IPRO,” “FPS Solimões RR,” “NS 5151 IPRO,” “SYN 13610 IPRO,” “LG 60177 IPRO,” “NS 6909 IPRO” and “BMX Desafio RR” were identified as the most drought-tolerant genotypes, whereas under salinity conditions, the genotypes “5D 615 RR,” “BMX Desafio RR,” “5D 6215 IPRO” and “BMX Ponta IPRO” were identified as tolerant. The “BMX Desafio RR” is the genotype most adapted to both stress conditions and, therefore, should be used under conditions of water shortage and excess salt in the soil at sowing time.  相似文献   
7.
ObjectiveTo evaluate the thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats.Study designRandomized, blinded, placebo-controlled crossover study design.AnimalsA total of six purpose-bred, adult female ovariohysterectomized Domestic Short Hair cats.MethodsCats were allocated into three treatments each consisting of two injections, subcutaneous then intravenous (IV) administration, 2 hours apart: treatment SS, two injections of 0.9% saline; treatment BS, buprenorphine (0.24 mg kg–1, 1.8 mg mL–1) and saline; and treatment BH, buprenorphine (0.24 mg kg–1) and hydromorphone (0.1 mg kg–1). Skin temperature (ST) and thermal threshold (TT) were recorded before (baseline) and for 24 hours following first injection. TT data were analyzed using mixed linear models and a Benjamini–Hochberg sequential adjustment procedure (p < 0.05).ResultsThere were no significant differences among treatments for baseline ST and TT values, treatment SS over time and between treatments BS and BH. Compared with baseline, TT was significantly increased at all time points in treatments BH and BS except at 2 hours in treatment BS. TT was significantly higher than SS at 3–18 hours and 4–12 hours for treatments BS and BH, respectively. Maximal increases in TT were 47.5 °C at 2 hours, 53.9 °C at 3 hours and 52.4 °C at 6 hours in treatments SS, BS and BH, respectively.Conclusions and clinical relevanceAdministration of IV hydromorphone following high-concentration buprenorphine provided no additional antinociception and decreased the duration of effect when compared with high-concentration buprenorphine alone. Alternative analgesics should be considered if additional analgesia is required after administration of high-concentration buprenorphine.  相似文献   
8.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号