首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
畜牧兽医   8篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We compared computed tomography (CT) and radiographic findings of Belgian shepherds with grade 1 or borderline elbow dysplasia to determine whether the radiopaque area dorsal to the anconeal process and seen in mediolateral 45° flexed radiographs is formed by osteophytes, or whether it is an anatomic variation. Eighteen dogs with screening results 0/1, 1/0, or one or both elbows graded as borderline were studied. The radiographs were evaluated according to International Elbow Working Group guidelines and compared with CT images. A fragmented medial coronoid process was seen in five joints, and remaining 31 joints were considered free of dysplasia based on CT images. In radiographs, height of the radiopaque area on the anconeal process was 0–2.7 mm in dysplastic and 0–3.0 mm in other joints. Sensitivity of this sign as dysplasia indicator was 40% and specificity 29%. All dysplastic joints and three of the other joints had blurring of the cranial edge of the medial coronoid process. Subtrochlear sclerosis was seen in four dysplastic joints and in three other joints. Both changes were significant indicators of dysplasia ( P <0.001). Sensitivity and specificity of these phenomena as dysplasia indicators were 80% and 90%, respectively. We conclude that the radiopaque area on the anconeal process might not always be osteophyte formation in Belgian shepherds and should not be used as the sole criterion for dysplasia. Blurring of the medial coronoid process cranial edge and ulnar trochlear notch sclerosis are reliable signs of elbow dysplasia and may be beneficial in screening protocols.  相似文献   
2.
Single-dose pharmacokinetics of detomidine in the horse and cow   总被引:1,自引:0,他引:1  
The pharmacokinetics of detomidine, a novel analgesic sedative, was studied in the major target species after high (80 micrograms/kg) i.v. and i.m. doses. In addition, drug residues in some organs were determined. Concentrations were measured using a sensitive, detomidine-specific radio-immunoassay method. Rapid absorption following i.m. dosing occurred. Absorption half-lives were 0.15 h (horse) and 0.08 h (cattle). The mean peak concentration in the horse (51.3 ng/ml) was achieved in 0.5 h and in the cow (65.8 ng/ml) in 0.26 h. The areas under the concentration curve after i.m. dosing were 66% (horse) and 85% (cow) of the corresponding i.v. values. Distribution was rapid with half-lives of 0.15 h (horse, i.v.) and 0.24 h (cow, i.v.). The apparent volume of distribution was higher after the i.m. dosing (horse 1.56 l/kg, cow 1.89 l/kg) than after i.v. dosing (horse 0.74 l/kg, cow 0.73 l/kg). Elimination half-lives were 1.19 h (horse) and 1.32 h (cow) for the i.v. dose and 1.78 h (horse) and 2.56 h (cow) for the i.m. dose. Total clearances ranged from 6.7 (horse, i.v.) to 12.3 (cow, i.m.) ml/min/kg. Renal clearances were less than 1% of the total clearances showing negligible excretion of the drug in urine and suggesting elimination by metabolism. A cross-reacting metabolite in urine corresponded to less than 1.5% of the detomidine dose's immunoreactivity. High-dose detomidine increased urine flow significantly. Excretion of detomidine in milk in cattle was extremely low. No detectable amounts were present 23 h after dosing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
Sedative and analgesic effects of medetomidine in dogs   总被引:3,自引:0,他引:3  
The sedative and analgesic effects of medetomidine were studied in 18 laboratory beagles in a randomized cross-over study which was carried out in a double-blind fashion. Xylazine was included as a positive control and placebo as a negative control. Medetomidine was used at doses of 10, 30, 90 and 180 micrograms/kg i.m. compared to a dose of 2.2 mg/kg xylazine i.m. Parameters closely related to sedation were used to measure the degree of sedation. These were a posture variable (including evaluation of the dog's posture without external disturbance and resistance when laid recumbent) and a relaxation variable (including relaxation of the jaws, upper eyelids and anal sphincter). The first signs of sedation were recorded 1.5-3.5 min after administration of both drugs. The dogs sat down at 0.6-2.6 min post-injection and became prone at 1.9-5.9 min. Medetomidine dose-dependently affected the posture of the dogs and the relaxation variable--the higher the dose, the stronger and longer lasting the effect recorded. The sedative effect of xylazine was comparable to a medetomidine dose of 30 micrograms/kg. The analgesic effect was assessed as changes in the response to superficial pain induced by electrical stimuli. The response threshold increased significantly with both drugs and the effect of medetomidine was dose-dependent. The effects of the doses of 30 micrograms/kg medetomidine and 2.2 mg/kg xylazine did not differ significantly. In summary, medetomidine possessed an excellent sedative effect associated with analgesia in dogs.  相似文献   
4.
Raekallio M. R., Honkavaara J. M., Vainio O. M. The effects of L‐659,066, a peripheral α2‐adrenoceptor antagonist, and verapamil on the cardiovascular influences of dexmedetomidine in conscious sheep. J. vet. Pharmacol. Therap. 33 , 434–438. We investigated whether administration of L‐659,066, a peripheral α2‐adrenoceptor antagonist, or verapamil, a calcium‐channel antagonist, would prevent the cardiovascular effects of dexmedetomidine. Eleven sheep received three intravenous treatments with a randomized, cross‐over design: dexmedetomidine (5 μg/kg, DEX); DEX with L‐659,066 (250 μg/kg, DEX + L); and verapamil (0.05 mg/kg) 10 min prior to DEX (Ver + DEX). Haemodynamics were recorded at intervals upto 40 min. Acute increases in mean arterial pressure (MAP) (106 ± 10.7 to 120.8 ± 11.7 mmHg), central venous pressure (CVP) (3.3 ± 3.2 to 14.7 ± 5.0 mmHg) and systemic vascular resistance (SVR) (1579 ± 338 to 2301 ± 523 dyne s/cm5), and decreases in cardiac output (CO) (5.36 ± 0.87 to 3.93 ± 1.30 L/min) and heart rate (HR) (88.6 ± 15.3 to 49.7 ± 5.5/min) were detected with DEX. The peak SVR remained lower after Ver + DEX (1835 ± 226 dyne s/cm5) than DEX alone, but the other parameters did not significantly differ between these treatments. 2 min after drug delivery, differences between DEX and DEX + L were statistically significant for all measured haemodynamic parameters. With DEX + L, an early decrease in MAP (99.9 ± 6.8 to 89.3 ± 6.6 mmHg) was detected, and DEX + L induced a slight but significant increase in CVP and a decrease in HR at the end of the observation period, while SVR and CO did not significantly change. All animals were assessed as deeply sedated from 2–20 min with no differences between treatments. L‐659,066 has great potential for clinical use to prevent the cardiovascular effects of dexmedetomidine mediated by peripheral α2‐adrenoceptors, whereas the effects of verapamil were marginal.  相似文献   
5.
Atipamezole reversed the sedative effect of medetomidine in twelve laboratory beagles. The dogs were sedated with medetomidine doses of 20, 40 and 80 micrograms/kg body wt i.m. Atipamezole was injected (i.m.) 20 min later at dose rates two, four, six and ten times higher (in micrograms/kg) than the preceding medetomidine dose. Placebo treatment was included in the study. The deeply sedated dogs showed signs of arousal in 3-7 min and took their first steps 4-12 min after atipamezole injection. The dose-related reversal effect of atipamezole proved to be optimal with doses which were four, six or ten times higher than the preceding medetomidine dose. Drowsiness was found 0.5-1 h after atipamezole injection in 41% of the cases. No adverse effects nor cases of over-alertness or excitement were found.  相似文献   
6.
Detomidine (10 micrograms/kg and 20 micrograms/kg) was administered to seven horses with and without epinephrine infusion (0.1 microgram/kg/min) from 5 minutes before to 5 minutes after detomidine injection. One or more single supraventricular premature heartbeats were observed in three horses after detomidine administration. Epinephrine infusion did not modify the incidence of cardiac arrhythmias in detomidine-treated horses at the doses tested. Relatively high momentary peak systolic pressures were registered in some horses after detomidine administration during epinephrine infusion. The highest systolic arterial blood pressure was 290 mm Hg, but this value was not higher than that reported in horses during maximum physical exercise. Epinephrine infusion did not alter blood gases, arterial pH, or base excess.  相似文献   
7.
Contrast‐enhanced ultrasound can be used to quantify tissue perfusion based on region of interest (ROI) analysis. The effect of the location and size of the ROI on the obtained perfusion parameters has been described in phantom, ex vivo and in vivo studies. We assessed the effects of location and size of the ROI on perfusion parameters in the renal cortex of 10 healthy, anesthetized cats using Definity® contrast‐enhanced ultrasound to estimate the importance of the ROI on quantification of tissue perfusion with contrast‐enhanced ultrasound. Three separate sets of ROIs were placed in the renal cortex, varying in location, size or depth. There was a significant inverse association between increased depth or increased size of the ROI and peak intensity (P<0.05). There was no statistically significant difference in the peak intensity between the ROIs placed in a row in the near field cortex. There was no significant difference in the ROIs with regard to arrival time, time to peak intensity and wash‐in rate. When comparing two different ROIs in a patient with focal lesions, such as suspected neoplasia or infarction, the ROIs should always be placed at same depth and be as similar in size as possible.  相似文献   
8.
Medetomidine, an α2-adrenoceptor agonist, is a potent sedative and analgesic agent in the dog. When necessary, its action can be effectively antagonized by atipamezole. The present work was designed to study the effects of these drugs on each others' pharmacokinetics when a single intramuscular dose of medetomidine (50 μg kg-1) was followed by a dose of atipamezole (250 μg kg-1). Three different treatments were used: medetomidine alone, atipamezole alone, and atipamezole after medetomidine. Drug concentrations in plasma were measured by GC-MS. Statistical analysis of the results (anova) revealed significant differences between treatments in the kinetic parameters of medetomidine. Atipamezole decreased the AUC of medetomidine from 41.3 to 28.6 ng h ml"1(P = 0.005), t1/4 from 1.44 to 0.87 h ( P = 0.015), and increased Cl from 21 to 31 ml min-1kg-1(P = 0.017). Differences in V2 did not reach statistical significance. The only statistically significant effects of medetomidine on the pharmacokinetics of atipamezole in this study were the slight decrease of Cl and C max as well as the increase of AUC . It is suggested that the large dose of medetomidine used caused haemodynamic changes, resulting in decreased hepatic circulation and slower drug metabolism. Antagonism by atipamezole restored the hepatic blood flow and, consequently, increased the elimination of medetomidine by biotransformation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号