首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
畜牧兽医   3篇
  2018年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

Using a cross-sectional survey, we determined the prevalence and risk factors associated with bovine brucellosis in herds under extensive production system in southwestern Nigeria. Antibodies to Brucella species in serum samples were tested using the Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent assay (cELISA); for milk, the milk ring test (MRT) and indirect-ELISA (i-ELISA) were used. Questionnaire was administered to cattle herdsmen to determine factors predisposing the animals to bovine brucellosis. Data were analyzed using STATA 12. From 513 serum and 635 milk samples tested among 120 herds, overall animal-level prevalence of 10.1% (95% CI 7.5–12.7%) and 20.2% (95% CI 17.1–23.3%) were recorded by RBT and MRT, respectively; while 9.4% (95% CI 6.9–11.9%) and 17.8% (95% CI 14.8–20.8%) were obtained using cELISA and i-ELISA, respectively. In all, from the 120 herds tested, 29.2% and 43.3% were positive by RBT and MRT, respectively. Multivariable logistic regression revealed that herd location (OR?=?8.12, 95% CI 1.68–38.90) and improper disposal of placenta/fetus (OR?=?17.33, 95% CI 4.81–62.33) were predictors for a seropositive herd using RBT; while herd location (OR?=?5.13, 95% CI 1.27–20.28), large herd size (OR?=?2.62, 95% CI 1.15–5.85), and occurrence of abortion for a year or more (OR?=?4.62, 95% CI 1.53–13.71) were predictors of seropositivity to antibodies to Brucella spp. using MRT. We found high prevalence of brucellosis in cattle herds under extensive management system in southwestern Nigeria. Urgent and coordinated control strategies are required to mitigate this problem.

  相似文献   
2.
3.
Following the recent discovery of new Brucella strains from different animal species and from the environment, ten Brucella species are nowadays included in the genus Brucella. Although the intracellular trafficking of Brucella is well described, the strategies developed by Brucella to survive and multiply in phagocytic and non-phagocytic cells, particularly to access nutriments during its intracellular journey, are still largely unknown. Metabolism and virulence of Brucella are now considered to be two sides of the same coin. Mechanisms presiding to the colonization of the pregnant uterus in different animal species are not known. Vaccination is the cornerstone of control programs in livestock and although the S19, RB51 (both in cattle) and Rev 1 (in sheep and goats) vaccines have been successfully used worldwide, they have drawbacks and thus the ideal brucellosis vaccine is still very much awaited. There is no vaccine available for pigs and wildlife. Animal brucellosis control strategies differ in the developed and the developing world. Most emphasis is put on eradication and on risk analysis to avoid the re-introduction of Brucella in the developed world. Information related to the prevalence of brucellosis is still scarce in the developing world and control programs are rarely implemented. Since there is no vaccine available for humans, prevention of human brucellosis relies on its control in the animal reservoir. Brucella is also considered to be an agent to be used in bio- and agroterrorism attacks. At the animal/ecosystem/human interface it is critical to reduce opportunities for Brucella to jump host species as already seen in livestock, wildlife and humans. This task is a challenge for the future in terms of veterinary public health, as for wildlife and ecosystem managers and will need a "One Health" approach to be successful.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号