首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
农学   6篇
  14篇
综合类   14篇
农作物   1篇
畜牧兽医   34篇
园艺   1篇
植物保护   2篇
  2020年   1篇
  2017年   2篇
  2014年   8篇
  2013年   5篇
  2012年   8篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2000年   1篇
  1998年   1篇
  1996年   4篇
  1994年   1篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1958年   2篇
排序方式: 共有72条查询结果,搜索用时 140 毫秒
1.
Cereals contaminated by Aspergillus spp., Penicillium spp., and Fusarium spp. and their mycotoxins, for example, ochratoxin A (OTA) and deoxynivalenol (DON), are not only a risk to human and animal health but can also show poor technological properties and baking quality. The influence of these genera on the sulfur speciation of low molecular weight (LMW) subunits of glutenin was characterized by investigating suboptimally stored wheat samples in situ by X-ray absorption near edge structure (XANES) spectroscopy and baking tests. Field fungi of the genus Fusarium have hardly any influence on both the sulfur speciation of wheat gluten proteins and the baking properties, whereas storage fungi of the genera Aspergillus and Penicillium have a direct influence. An increased amount of sulfur in sulfonic acid state was found, which is not available for thiol/disulfide exchange reactions in the gluten network, and thus leads to a considerably reduced baking volume. From changes of the composition of the mould flora during suboptimal storage of wheat and from the mycotoxin contents, it can be concluded that microbial competitive interactions play an important role in the development of the mould flora and the mycotoxin concentrations during (suboptimal) storage of wheat.  相似文献   
2.
This study evaluated the reproductive performance of gilts inseminated at three intervals before ovulation (0-12, 13-23, 24-30 h) with sperm doses (SD) stored for 0-48 and 96-120 h. A total of 218 PIC Camborough 22 gilts were inseminated once with SD of 1.5 x 10(9) sperms. Pregnant gilts (n = 166) were slaughtered 30.8 +/- 3.7 days after artificial insemination. The number of corpora lutea (CL) and total embryos (TE) was counted. Pregnancy rates (PR) were analysed by chi-square test. TE and embryonic survival (ES), obtained as the ratio between viable embryos and CL, were analysed by GLM procedure (SAS) and mean values were compared by Tukey's test. Pregnancy rate was similar among artificial insemination-ovulation (AIOV) intervals when semen was stored for 0-48 h. However, the lowest PR was observed in the 24-30 h AIOV interval with storage time (ST) of 96-120 h (p < 0.05). There was a significant effect of the interaction between ST and AIOV (p < 0.05) on TE and ES variables. Total embryos and ES did not differ (p > 0.05) among AIOV intervals in ST of 0-48 h. However, gilts inseminated at 24-30 h AIOV interval with ST of 96-120 h showed a reduction of 6.7 embryos (p < 0.05) compared with gilts in the same interval inseminated with semen stored for 0-48 h. ES for the 24-30 h AIOV interval and ST of 96-120 h was lower than that observed in the other groups (p < 0.05).  相似文献   
3.
4.
The study evaluated the reproductive performance of primiparous sows submitted to post‐cervical insemination (PCAI) compared with cervical artificial insemination (CAI). Difficulty with catheter introduction, the occurrence of bleeding or semen backflow during insemination, and volume and sperm cell backflow up to 60 min after insemination were also evaluated. Sows were homogenously distributed, according to body weight loss in lactation, lactation length, weaned piglets, weaning‐to‐oestrus interval and total born in previous farrowing, in two treatments: PCAI (n = 165) with 1.5 × 109 sperm cells in 45 ml (2.4 ± 0.04 doses per sow) and CAI (n = 165) with 3 × 109 sperm cells in 90 ml (2.5 ± 0.04 doses per sow). During PCAI, sows were inseminated in the absence of boars. Transabdominal real‐time ultrasonography was performed at oestrus onset, immediately before the first insemination and at 24 h after last insemination. There was no difference (P > 0.05) between treatments in farrowing rate (91.5% × 89.1%) and litter size (12.5 × 11.9 piglets born, respectively for PCAI and CAI sows). Successful passage of the intrauterine catheter in all the inseminations was possible in 86.8% (165/190) of sows initially allocated to PCAI treatment. Difficulty of introducing the catheter in at least one insemination did not affect the reproductive performance of PCAI sows (P > 0.05). Bleeding during insemination did not affect (P > 0.05) the farrowing rate in both treatments, but litter size was reduced in CAI and PCAI sows (P ≤ 0.06). Percentage of spermatozoa present in backflow within 1 h after insemination was greater in CAI than PCAI sows (P < 0.01). More than 85% of primiparous sows can be successfully post‐cervical inseminated with doses containing 1.5 × 109 sperm cells in the absence of the boar during insemination without impairing the reproductive performance.  相似文献   
5.
6.
Plant response to increasing atmospheric CO2 partial pressure (pCO2) depends on several factors, one of which is mineral nitrogen availability facilitated by the mineralisation of organic N. Gross rates of N mineralisation were examined in grassland soils exposed to ambient (36 Pa) and elevated (60 Pa) atmospheric pCO2 for 7 years in the Swiss Free Air Carbon dioxide Enrichment experiment. It was hypothesized that increased below-ground translocation of photoassimilates at elevated pCO2 would lead to an increase in immobilisation of N due to an excess supply of energy to the roots and rhizosphere. Intact soil cores were sampled from Lolium perenne and Trifolium repens swards in May and September, 2000. The rates of gross N mineralisation (m) and NH4+ consumption (c) were determined using 15N isotopic dilution during a 51-h period of incubation. The rates of N immobilisation were estimated either as the difference between m and the net N mineralisation rate or as the amount of 15N released from the microbial biomass after chloroform fumigation. Soil samples from both swards showed that the rates of gross N mineralisation and NH4+ consumption did not change significantly under elevated pCO2. The lack of a significant effect of elevated pCO2 on organic N turnover was consistent with the similar size of the microbial biomass and similar immobilisation of applied 15N in the microbial N pool under ambient and elevated pCO2. Rates of m and c, and microbial 15N did not differ significantly between the two sward types although a weak (p<0.1) pCO2 by sward interaction occurred. A significantly larger amount of NO3 was recovered at the end of the incubation in soil taken from T. repens swards compared to that from L. perenne swards. Eleven percent of the added 15N were recovered in the roots in the cores sampled under L. perenne, while only 5% were recovered in roots of T. repens. These results demonstrate that roots remained a considerable sink despite the shoots being cut at ground level prior to incubation and suggest that the calculation of N immobilisation from gross and net rates of mineralisation in soils with a high root biomass does not reflect the actual immobilisation of N in the microbial biomass. The results of this study did not support the initial hypothesis and indicate that below-ground turnover of N, as well as N availability, measured in short-term experiments are not strongly affected by long-term exposure to elevated pCO2. It is suggested that differences in plant N demand, rather than major changes in soil N mineralisation/immobilisation, are the long-term driving factors for N dynamics in these grassland systems.  相似文献   
7.
8.
9.
10.

Nachruf

Dr. Walter O'Daniel  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号