首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   27篇
  国内免费   15篇
林业   27篇
农学   10篇
基础科学   3篇
  39篇
综合类   143篇
农作物   8篇
水产渔业   28篇
畜牧兽医   180篇
园艺   3篇
植物保护   13篇
  2024年   5篇
  2023年   8篇
  2022年   8篇
  2021年   9篇
  2020年   7篇
  2019年   6篇
  2018年   5篇
  2017年   12篇
  2016年   19篇
  2015年   16篇
  2014年   18篇
  2013年   20篇
  2012年   26篇
  2011年   26篇
  2010年   23篇
  2009年   17篇
  2008年   23篇
  2007年   22篇
  2006年   16篇
  2005年   17篇
  2004年   14篇
  2003年   19篇
  2002年   15篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   10篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1983年   3篇
  1981年   2篇
  1978年   6篇
  1974年   1篇
  1965年   1篇
  1954年   1篇
  1948年   1篇
  1945年   1篇
  1942年   1篇
  1939年   1篇
  1934年   1篇
  1933年   2篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
1.
声驱鱼技术作为辅助过鱼措施之一,承担着保证鱼类洄游顺利通过过鱼设施,继而保护鱼类资源和恢复河流连通性的重要作用。本研究采用交替播音的形式,以草鱼(Ctenopharyngodon idellus)幼鱼为研究对象进行负趋音性实验,旨在探究草鱼幼鱼面对不同声音的行为反应。实验水槽(3.6 m×1.1 m×1.0 m)布置于下牢溪周围水域,平均水深为0.5 m,平均流速为0.06 m/s。实验使用1种单频音(1 000 Hz)和5种复杂音(鱼游动声、引擎声、短吻鳄叫声、打桩声和游艇声),声压级(sound pressure level)为(117.69±2.77) dB re 1 μPa,对照组为未播放声音时草鱼的行为反应数据。结果显示,播放复杂音时,草鱼的反应次数、趋音速度、运动时间比均显著高于单频音和对照组(P<0.001),草鱼的初次反应时间、平均反应时间均显著低于单频音和对照组(P<0.001);复杂音中,受到游艇声刺激的草鱼反应次数和趋音速度最大,受到鱼游动声刺激的草鱼反应次数、趋音速度最小;复杂音中,受到游艇声刺激的草鱼初次反应时间最短,为(23.40±5.13) s;受到引擎声刺激的草鱼初次反应时间最长,为(146.00±7.82) s,显著低于其他复杂音(P<0.05);受到游艇声和打桩声刺激的草鱼平均反应时间最短,分别为(26.52±3.01) s和(28.76±4.07) s;受到鱼游动声刺激的草鱼平均反应时间最长,为(64.76±17.82) s;复杂音中,受到鱼游动声刺激的草鱼运动时间比最高,为(98.47±0.48)%;受到引擎声刺激的草鱼运动时间比最低,为(94.58±0.54)%;播放单频音时,草鱼的反应次数、初次反应时间、平均反应时间、运动时间比均与对照组无显著差异(P>0.05)。本研究表明,5种复杂音(鱼游动声、引擎声、短吻鳄叫声、打桩声和游艇声)对草鱼幼鱼具有驱赶效果。本研究在丰富鱼类负趋音性研究的同时,为实际工程中声驱鱼辅助过鱼设施的设计和优化提供了科学依据。  相似文献   
2.
The study aimed to assess the effects of vitamin E (VE) supplementation and fat source on fatty acid (FA) composition, VE concentrations, and antioxidant capacity in plasma and tissues of pigs fed to a heavy slaughter weight (150 kg). A total of 64 pigs (32 barrows, 32 gilts; 28.41 ± 0.83 kg) were blocked by sex and weight, and randomly assigned to one of eight dietary treatments (n = 8 per treatment) in a 4 × 2 factorial arrangement. Fat sources included corn starch (CS), 5% tallow (TW), 5% distiller’s corn oil (DCO), and 5% coconut oil (CN); VE supplementation levels were 11 and 200 ppm. Five-phase diets were formulated to meet requirement estimates of NRC (2012) and fed to pigs for each period of 25 kg from 25 to 150 kg. Increasing VE supplementation level increased C16:1 (P < 0.05) content but decreased C20:0 (P < 0.05) content in backfat and belly fat, while in liver, it increased C17:0 (P < 0.05) but decreased C18:0 (P < 0.05). Compared to the pigs fed the CS diet, the pigs fed the CN diet had greater (P < 0.05) content of total saturated FA, the pigs fed the DCO diet had greater (P < 0.05) content of total polyunsaturated FA content and iodine value, and the pigs fed the TW diet had greater (P < 0.05) content of total monounsaturated FA in backfat, belly fat, and liver. Plasma VE concentrations increased linearly (P < 0.05) with increasing length of feeding but faster (P < 0.05) in the pigs fed the CN and TW diets compared with the CS and DCO diets within the 200 ppm VE level; the pigs fed the DCO diet had the highest plasma VE concentrations (P < 0.05) from Phase 2 to Phase 5 within the 11 ppm VE level. The VE concentrations in liver and loin muscle (P < 0.05) increased with increasing dietary VE level from 11 to 200 ppm, but it was not affected by dietary fat source. There was no effect of VE supplementation and fat source on antioxidant capacity in plasma and liver except that pigs fed the DCO diet had greater liver SOD activity (P < 0.05) than the pigs fed the CN diet. In conclusion, dietary VE supplementation did not affect FA profile in backfat, belly fat, and liver consistently, while dietary FA composition with different fat sources affected much of the FA profile in backfat, belly fat, and liver. The higher level of VE supplementation increased liver and muscle VE concentrations and dietary fat sources affected plasma VE concentrations differently (P < 0.05), wherein the TW and CN diets increased the VE absorption greater than the DCO diet.  相似文献   
3.
Reply     
  相似文献   
4.
Two experiments were done using a two-by-two design to determine the effects of season and superstimulatory protocol on embryo production in wood bison. In Experiment 1 (in vivo-derived embryos), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with either two or three doses of FSH given every-other-day (FSH × 2 vs. FSH × 3, respectively). Bison were given hCG to induce ovulation, inseminated 12 and 24 hr after hCG, and embryos were collected 8 days after hCG (n = 10 bison/group). In Experiment 2 (in vitro embryo production), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with two doses of FSH, and in vivo maturation of the cumulus–oocyte complexes (COC) was induced with hCG at either 48 or 72 hr after the last dose of FSH. COC were collected 34 hr after hCG, and expanded COC were used for in vitro fertilization and culture. In Experiment 1, the number of follicles ≥9 mm, the proportion of follicles that ovulated, the number of CL, and the total number of ova/embryos collected did not differ between seasons or treatment groups, but the number of transferable embryos was greater (p < .05) in the ovulatory season. In Experiment 2, no differences were detected between seasons or treatment groups for any end point. The number of transferable embryos produced per bison was greatest (p < .05) using in vitro fertilization and was unaffected by season (1.5 ± 0.2 and 1.1 ± 0.3 during anovulatory and ovulatory seasons, respectively), in contrast to in vivo embryo production which was affected by season (0.1 ± 0.01 and 0.7 ± 0.2 during anovulatory and ovulatory seasons, respectively). Results demonstrate that transferable embryos can be produced throughout the year in wood bison by both in vivo and in vitro techniques, but the efficiency of embryo production of in vivo-derived embryos is significantly lower during the anovulatory season.  相似文献   
5.
Perennial ryegrass is the primary forage component of ruminant diets in New Zealand. It is persistent and palatable, and immature ryegrass has a high nutritive value (NV). However, seed-head development substantially lowers its feeding value (FV) as fibre concentration increases, the rate and extent of digestibility decreases, and voluntary intake declines. Ryegrass pastures are susceptible to accumulation of endophytic and saprophytic fungi in dead material at the base of the sward, especially when mature and laxly grazed. Feeding forage legumes to ruminants grazing grass-dominant pastures will improve animal performance and lessen the reliance on a single species to meet all nutritional requirements.

The FV of forage is a function of intake and NV, measured by chemical analyses and animal feeding trials. Performance of individual animals grazing forages is usually limited by energy intake because structural fibre can slow digestion and clearance from the rumen and because of competition between individuals for available feed. The use of metabolisable energy (ME) content of forage to signify FV can give a reasonable indication of animal performance, but it should be used in conjunction with chemical analyses to improve the accuracy of predictions.

The relationship between FV, pasture production, animal performance and profitability is complex. The importance of skilled management to maintain pasture quality and optimise animal performance under inconsistent climatic conditions should not be underestimated. Acceptable animal performance with minimal veterinary intervention requires good nutrition, but the genetic potential of livestock in New Zealand cannot be met solely by grazing pasture, especially when a high utilisation of pasture is required to maintain quality and profitability.

Producers are responding to industry demands to reduce the seasonality in supply of milk and meat by changing lambing and calving dates, and extending lactation length in dairy cows. Social changes include adoption of once-daily milking in the dairy industry. Some changes have necessitated increased use of supplements and others can be met by feeding forages with a higher FV than ryegrass, all of which require an improved knowledge of feed quality. This information is available through rapid and inexpensive near infrared spectroscopy (NIRS) analysis, enabling animal nutritional needs to be balanced by appropriate nutrient supply. It is essential that producers continue to improve animal welfare, limit excessive use of fertilisers and meet the demands of overseas consumers. Good nutrition, with an increased use of legumes and other forages to complement ryegrass pastures, will enable these objectives to be achieved.  相似文献   
6.
Safe and effective echocardiography would represent a valuable tool for marine mammal veterinarians and physiologists evaluating the dolphin heart. Unfortunately, conventional ultrasound technology (transthoracic echocardiography) has been limited by logistic, anatomic, and behavioral challenges. Five mature male Atlantic bottlenose dolphins (Tursiops truncatus) were trained for echocardiographic imaging (four for both transthoracic and transesophageal imaging, and one for only transthoracic imaging). It was noted that transesophageal image quality transiently improved when the dolphins spontaneously exhaled. Subsequently, dolphins were conditioned to hold their breath following forced exhalation, and imaging proceeded during such behavioral breath holds. Over 25 transthoracic and 100 transesophageal echocardiographic studies were performed, including both two-dimensional imaging and color flow mapping. Transthoracic imaging yielded poor-quality images of only small portions of the heart. In contrast, transesophageal imaging, which improved dramatically with behavioral breath holding following exhalation, yielded consistently high-quality images of the entire heart (mitral, tricuspid, aortic, and pulmonary valves, atrial and ventricular septa, left and right atria, left and right ventricles, and ascending aorta and main pulmonary artery). Color flow mapping demonstrated mild tricuspid regurgitation in all dolphins, and mild aortic regurgitation in one dolphin found to have a pedunculated mass arising from the sinutubular junction just above the aortic valve. There were no complications in nonsedated dolphins. The heart of the bottlenose dolphin can be safely, effectively, and reproducibly evaluated with the use of transesophageal echocardiography in conjunction with behavioral breath holding following forced exhalation. This approach, and the normative echocardiographic data generated from this work, lays the foundation for future echocardiographic studies of cetaceans.  相似文献   
7.
Beef cows were used to determine if suckling influences release of LH via endogenous opioids at 28 +/- 4 d after parturition. Cows of similar weight and body condition (6.8 +/- .1, 1 = emaciated, 9 = obese) were assigned randomly to five groups (n = 6 to 7): 1) control-suckled/saline (suckled 15 min every 6 hr for 48 hr); 2) control-suckled/naloxone; 3) calf-removal/saline (calf removal for 52 hr); 4) calf-removal/naloxone; and 5) control-suckled/GnRH (Gonadotropin-Releasing Hormone). At 0 hr, saline was administered to all cows. This treatment was continued at 6 hr intervals for 24 hr. Either naloxone (0.5 mg/kg), GnRH (40 ng/kg) or saline was administered to cows in their respective groups every 6 hr during the ensuing 24-hr period in calf-removal groups, or immediately preceding each suckling episode in the control-suckled groups. Blood samples for analysis of luteinizing hormone (LH) were collected at 15-min intervals for 1 hr prior to and 3 hr after treatment at 0, 24, 36 and 48 hr. Cows were observed for estrus twice daily. All cows in the control-suckled/GnRH group released LH (P less than .05) in response to exogenous GnRH, indicating the presence of releasable quantities of the gonadotropin. Mean concentrations of LH were not effected (P greater than .05) by the control-suckled regime. However, calf-removal alone, or in combination with naloxone, increased (P less than .05) mean concentrations of LH by 48 hr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
9.
The purpose of this study was to determine whether or not embryos derived from in vitro fertilization of oocytes from persistently infected (PI) cattle would contain infectious virus. Three in vitro embryo production treatment groups were assessed: 1) oocytes and uterine tubal cells (UTC) free of bovine viral diarrhoea virus (BVDV) (negative control), 2) oocytes free of BVDV fertilized and cultured in media containing UTC obtained from PI heifers, and 3) oocytes from PI heifers fertilized and cultured in media containing UTC free of BVDV. The developmental media, UTC and embryos (individual or groups of five) were assayed for virus. Virus was not isolated from any samples in treatment group 1. As shown in previous studies, a proportion of embryo samples were positive for BVDV in treatment group 2. In treatment group 3, the virus associated with the oocytes contaminated the developmental media and infected susceptible co-culture cells used during fertilization and culture. In addition, 65% (11/17) of the degenerated ova from treatment group 3 had infectious virus associated with them. While none of the ova developed into transferable embryos, the study did confirm that use of oocytes from PI cows could lead to amplification of BVDV and cross contamination during in vitro embryo production.  相似文献   
10.
达光文 《草业科学》2009,26(6):41-46
对旱泉沟流域的植被种类组成、物种多样性和物种重要值进行调查分析,采用TWINSPAN对旱泉沟流域次生植物群落进行数量分类,从植物群系组成、植物群落之间的生态关系方面,研究旱泉沟流域封山禁牧区植被群落的分布格局,初步探讨乔木树种的演替趋势。研究结果表明:1)采用TWINSPAN数量分类方法,将植被划分为7个群落类型;2)从群落Ⅰ到群落Ⅶ, 乔木、灌木、草本的Simpson优势度指数基本持平,Shannon Wiener多样性指数为乔木<灌木<草本,Pielou均匀度指数为乔木>草本>灌木,物种丰富度逐渐升高。群落的物种组成和空间结构逐渐复杂化,并趋于稳定;3)次生林的演替序列为山杨树Populus davidiana→桦树Betula platyphylla→青海云杉Pica crassifolia,其自然演替顶级为青海云杉。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号