首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   42篇
林业   10篇
  16篇
综合类   22篇
农作物   3篇
水产渔业   5篇
畜牧兽医   115篇
园艺   3篇
植物保护   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   16篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   13篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   3篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   6篇
  1973年   1篇
  1948年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Zmyslony  Jean  Gagnon  Daniel 《Landscape Ecology》2000,15(4):357-371
Contagious spatial patterns were shown to exist in the landscape of front-yards in street sections of Hochelaga-Maisonneuve, Montréal. Neighbour mimicry was hypothesized as the mechanism behind this pattern (Zmyslony and Gagnon 1998). To assess the role of spatial environmental factors in structuring this pattern, we carried out a path analysis on the front-yard landscape with five spatial factors: relative distance, street side, width, depth and type of front-yard. We removed all non-significant factors from our model with simple Mantel tests and untangled the common spatial component from the relationship between spatial factors and front-yard landscape with partial Mantel tests. We then used path analysis to evaluate the relative importance of all significant spatial factors in structuring front-yard landscape and to determine the r 2 (% of landscape variation explained by spatial factors). Results showed that (1) among all spatial environmental factors, distance (proximity) remained the best predictor of front-yard vegetation – distance alone explained an average of 20% of the landscape variation of a street section, (2) depth, width and type of front-yard also structured the front-yard landscape independently of distance, (3) front-yard landscape expresses greater similarity within the same side of a street section, and (4) in two street sections of Hochelaga-Maisonneuve, spatial factors predicted over 40% of the landscape variation. This suggests (1) that landscape contagion exists also in highly humanized environments and (2) that the mimicry phenomenon was induced not only by proximity, but also by similar environmental conditions in same side street sections and whole street sections. Finally, we suggest that street sections are a very useful and appropriate unit of analysis of urban ecosystems.  相似文献   
7.
8.
Hydroponics culture generates large amounts of wastewater that are highly concentrated in nitrate and phosphorus but contains almost no organic carbon. Constructed wetlands (CWs) have been proposed to treat this type of effluent, but little is known about the performance of these systems in treating hydroponic wastewater. In addition, obtaining satisfactory winter performances from CWs operated in cold climates remains a challenge, as biological pathways are often slowed down or inhibited. The main objective of this study was to assess the effect of plant species (Typha sp., Phragmites australis, and Phalaris arundinacea) and the addition of organic carbon on nutrient removal in winter. The experimental setup consisted of 16 subsurface flow CW mesocosms (1 m2, HRT of 3 days) fed with 30 L?d1 of synthetic hydroponics wastewater, with half of the mesocosms fed with an additional source of organic carbon (sucrose). Carbon addition had a significant impact on nitrate and phosphate removal, with removal means of 4.9 g m-2?d-1 of NO3-N and 0.5 g m-2 d-1 of PO4-P. Planted mesocosms were generally more efficient than unplanted controls. Furthermore, we found significant differences among plant treatments for NO3-N (highest removal with P. arundinacea) and COD (highest removal with P. australis/Typha sp.). Overall, planted wetlands with added organic carbon represent the best combination to treat hydroponics wastewater during the winter.  相似文献   
9.
Increasing environmental concentrations of platinum group metals (PGMs), in particular platinum (Pt), rhodium (Rh) and palladium (Pd), from catalytic converters has been reported worldwide. The impact of these three metals on the uptake and use of essential mineral nutrients was examined using two plant models: the submerged aquatic plant, Elodea canadensis, and the terrestrial emergent plant, Peltandra virginica. Plants were grown for 2 weeks in nutrient solutions with either Pt4+ at concentrations between 0.05 and 5 mg/L, or a 0.1 mg/L Pt4+, Rh3+, Pd2+ mixture. Some treatments received additional Ca2+, Zn2+, or humic acid (with varying pH) to study how these conditions affected PGM uptake. Metal concentration analyses were conducted using a graphite furnace atomic absorption spectrometer (GFAAS) or an inductively coupled plasma emission spectrometer (ICP). Growth response was assessed through total chlorophyll content. There was significant Pt accumulation in plant tissues, from 55 to 326 times the concentration in nutrient solution. At pH 8, the addition of humic acid doubled Pt accumulation in comparison to the control. Additional exogenous minerals did not significantly affect PGM uptake, nor did the uptake of PGMs interfere with the uptake of Ca, Fe or Cu. Synthesis of chlorophyll in new shoots was not affected by Pt accumulation; however, visible chlorosis was observed in older shoots at 5 ppm Pt. Roadside Daucus carota samples from four heavy traffic locations in Dutchess County (New York) were also assessed for PGM content. Pt, Pd and Rh concentrations averaged 14.6, 10.2, and 0.7 μg/g, respectively.  相似文献   
10.
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy approximately 80 electron volts), containing approximately 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of approximately 10(-6). These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ( approximately 24 attoseconds).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号