首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   903篇
  免费   52篇
林业   14篇
农学   11篇
基础科学   6篇
  63篇
综合类   179篇
农作物   18篇
水产渔业   45篇
畜牧兽医   552篇
园艺   12篇
植物保护   55篇
  2020年   12篇
  2019年   15篇
  2018年   10篇
  2017年   19篇
  2016年   15篇
  2015年   15篇
  2014年   15篇
  2013年   44篇
  2012年   33篇
  2011年   42篇
  2010年   22篇
  2009年   18篇
  2008年   31篇
  2007年   32篇
  2006年   17篇
  2005年   29篇
  2004年   34篇
  2003年   25篇
  2002年   36篇
  2001年   30篇
  2000年   17篇
  1999年   22篇
  1998年   12篇
  1997年   17篇
  1996年   11篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   15篇
  1991年   19篇
  1990年   11篇
  1989年   15篇
  1988年   21篇
  1987年   11篇
  1986年   18篇
  1985年   13篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1979年   12篇
  1978年   7篇
  1976年   11篇
  1975年   9篇
  1974年   14篇
  1973年   12篇
  1972年   6篇
  1971年   6篇
  1970年   10篇
  1904年   6篇
排序方式: 共有955条查询结果,搜索用时 0 毫秒
1.
2.
We studied the effects of the root endoparasitic nematode Heterodera trifolii on rhizodeposition and the root architecture of white clover (Trifolium repens). Rhizosphere solutions were collected from the root systems of plants growing with and without H. trifolii (200 juveniles per inoculated plant) in sand-based microlysimeters. The organic carbon (C) content of these solutions was analyzed, and they were applied to plant-free soils to investigate microbial responses. Although plant biomass was unaffected by nematodes, the architecture of the root systems was significantly altered, with a decrease in overall root length and an increase in the density of lateral branches from the primary root. The presence of nematodes reduced the concentration of organic compounds in the rhizosphere solutions but only on the final sampling date (75 days). Analysis of microbial signature phospholipid fatty acids revealed no change in the structure of the microbial communities in soils to which rhizosphere solutions were applied. However, these microorganisms did respond with changes in substrate utilization patterns (community-level physiological profiles). Microbes in soils that received rhizosphere solutions from the nematode-infected clover showed lower utilization of most substrates but higher utilization of oligosugars. These responses appear to be related to changes in roots and rhizodeposition associated with nematode infection of clover roots. The results of this study suggest that root herbivory can negatively impact carbon-limited soil microbial communities via changes in root architecture that moderate rhizodeposition.  相似文献   
3.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   
4.
Results from the aeroshell-mounted neutral mass spectrometer on Viking I indicate that the upper atmosphere of Mars is composed mainly of CO(2) with trace quantities of N(2), Ar, O, O(2), and CO. The mixing ratios by volume relative to CO(2) for N(2), Ar, and O(2) are about 0.06, 0.015, and 0.003, respectively, at an altitude near 135 kilometers. Molecular oxygen (O(2)(+)) is a major component of the ionosphere according to results from the retarding potential analyzer. The atmosphere between 140 and 200 kilometers has an average temperature of about 180 degrees +/- 20 degrees K. Atmospheric pressure at the landing site for Viking 1 was 7.3 millibars at an air temperature of 241 degrees K. The descent data are consistent with the view that CO(2) should be the major constituent of the lower martian atmosphere.  相似文献   
5.
6.
7.
Kim DS  Cook RJ  Weller DM 《Phytopathology》1997,87(5):551-558
ABSTRACT Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40 degrees C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80 degrees C for 30 min), macerated, and dilution-plated on (1)/(10)-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15 degrees C; provided significant suppression of all three root diseases at 15 degrees C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4 degrees C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号