首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
畜牧兽医   4篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.  相似文献   
2.
William R.  Widmer  DVM  MS  Kenneth A.  Buckwalter  MD  MS  John F.  Fessler  DVM  MS  Michael A.  Hill  B Vet  Med  MS  PhD  MRCVS  David C.  Vansickle  DVM  PhD  Susan  Ivancevich  MD 《Veterinary radiology & ultrasound》2000,41(2):108-116
Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.  相似文献   
3.
4.
Radiography and magnetic resonance imaging were used to evaluate osteoarthritis at 2, 6, and 12 weeks following transection of the cranial cruciate ligament of the stifle (femorotibial) joint of 6 dogs. A quantitative radiographic scoring system was used to assess the progression of hard and soft tissue changes of osteoarthritis. Mediolateral (flexed joint) and oblique (extended joint) radiographic projections enabled identification of small osteophytes on the femoral trochlear ridges, which were detected at an earlier stage of development than was previously reported. Magnetic resonance imaging was useful in detecting changes in cartilage thickness, osteophytosis and intraarticular loose bodies. Radiography and magnetic resonance imaging were complementary in the assessment of pathologic changes of osteoarthritis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号