首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
林业   1篇
综合类   1篇
水产渔业   2篇
畜牧兽医   12篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1990年   3篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
1.
2.
本文阐述了猪链球菌病的临床症状、实验室检验及防治方法,力求为科学防控猪链球菌病提供有益的探索和参考。  相似文献   
3.
4.
5.
Six mature Holstein bulls were given an 8-day course of phenylbutazone (PBZ) orally (loading dose, 12 mg of PBZ/kg of body weight and 7 maintenance doses of 6 mg of PBZ/kg, q 24 h). Plasma concentration-vs-time data were analyzed, using nonlinear regression modeling. The harmonic mean +/- pseudo-SD of the biologic half-life of PBZ was 61.8 +/- 12.8 hours. The arithmetic mean +/- SEM of the total body clearance and apparent volume of distribution were 0.0021 +/- 0.0001 L/h/kg and 0.201 +/- 0.009 L/kg, respectively. The predicted mean minimal plasma concentration of PBZ with this dosage regimen was 75.06 +/- 4.05 micrograms/ml. The predicted minimal plasma drug concentration was compared with the observed minimal plasma drug concentration in another group of bulls treated with PBZ for at least 60 days. Sixteen mature Holstein bulls were given approximately 6 mg of PBZ/kg, PO, daily for various musculoskeletal disorders. The mean observed minimal plasma concentration of PBZ in the 16 bulls was 76.10 +/- 2.04 micrograms/ml, whereas the mean predicted minimal plasma concentration was 74.69 +/- 3.10 micrograms/ml. Dosages of 4 to 6 mg of PBZ/kg, q 24 h, or 10 to 14 mg of PBZ/kg, q 48 h, provided therapeutic plasma concentrations of PBZ with minimal steady-state concentrations between 50 and 70 micrograms/ml.  相似文献   
6.
OBJECTIVE: To characterize the pharmacokinetics of lamivudine (3TC) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and lamivudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and lamivudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of lamivudine declined rapidly with a t(1/2) of 1.9 +/- 0.21 hours, 2.6 +/- 0.66 hours, and 2.7 +/- 1.50 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.22 +/- 0.09 L/h/kg and 0.60 +/- 0.22 L/kg, respectively. Mean Tmax for i.g. administration (0.5 hours) was significantly shorter than Tmax for p.o. administration (1.1 hours). The AUC after i.v., i.g., and p.o. administration was 130 +/- 55.2 mg x h/L, 115 +/- 97.5 mg x h/L, and 106 +/- 94.9 mg x h/L, respectively. Lamivudine was well absorbed after i.g. and p.o. administration with bioavailability values of 88 +/- 45% and 80 +/- 52%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had a shorter t(1/2) but slower total clearance of lamivudine, compared with humans. Plasma concentrations of lamivudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.14 microM [0.032 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   
7.
The aim of this study was to determine the effects of various abiotic factors, such as light, physical stress (pipetting) and thermal shock, on the quality of fresh and cooled equine sperm. In experiment I, four sperm aliquots were subjected to different light exposures: (i) protected control samples (CTRL), (ii) exposed to UV light at 10 cm (UV10), (iii) exposed to UV light at 20 cm (UV20) and (iv) exposed to laboratory lighting (LAB). In experiment II, four semen aliquots were subjected to repeated pipetting for 0, 10, 20 and 30 times (CTRL, P10, P20 and P30, respectively). In experiment III, four semen aliquots at 15°C were subjected to thermal oscillations: (i) cooled control sperm at 15°C (CTRL), (ii) oscillations of 1.9°C/min to a temperature of 30°C (T30), (iii) oscillations of 1.4°C/min, with the temperature rapidly falling until reaching 1.3°C (T0R) and (iv) oscillations of 1.1°C/min, with the temperature slowly falling until reaching 4.2°C (T0S). The results revealed that after 30 min, UV10 and UV20 sperm samples showed significantly (p < .05) lower total and progressive motility values, sperm kinematic parameters and mitochondrial potential. After 45 min of exposure, differences were highly significant (p < .001). No significant differences (p > .05) were found for pipetting or thermal oscillations. The results suggest that, even if equine sperm samples are not handled in the laboratory under optimal conditions, fresh and cooled equine spermatozoa are able to resist the impact of various abiotic stimuli without any reduction in their quality. This study analyses the effect on normospermic samples, but future research could look at the tolerance that asthenozoospermic equine samples have to these abiotic influences.  相似文献   
8.
AIMS: To assess, in dairy cows between 60–160 days of gestation, whether the agreement between actual gestational age and that predicted by placentome size could be improved by using individual placentome measurements rather than a single average, and to identify how increasing the number of placentomes measured improved the prediction.

METHODS: Data were obtained from 58 cows examined using transrectal ultrasonography every 10 days between 60–130 days, and every 15 days between 130–160 days of gestation. For each cow, four to six placentomes in each of the pregnant and non-pregnant horns were examined from the region of the uterus near to the cervix. A mixed-effects model, which included cow as a random effect, and a simple linear regression which ignored within-cow correlation, were fitted to the data. Inverse regression was used to compare the 95% prediction bands obtained for estimating gestational age using the means of three, five or eight placentome measurements.

RESULTS: The fit of the mixed effects model was better than a simple linear regression (p<0.001) but the fitted lines from the two models were very similar. Using the simple regression model, for a mean placentome length of 15?mm estimated gestational age was 100 days, with 95% CI of 68–131 days for measurement of three placentomes, and 80–120 days for eight placentomes.

CONCLUSIONS: The agreement between placentome size and gestational age was improved by increasing the number of placentomes measured. Direct comparison of these CI with those for other published fetal measures was not possible as similar prediction bands have not previously been calculated for fetal measures; however one study reported a residual SD which had been calculated using size measurements as the predictor variable and age as the response variable. Using these data 95% CI were calculated to be ±9 days for crown-rump length and ±25 days for uterine diameter. These are likely to be an underestimate of the true CI and do not take account of the increase in variance of the difference between predicted and actual gestational age as gestational age increases.

CLINICAL RELEVANCE: Placentome measurement may be useful for estimating fetal age in late gestation. Further research is required to better establish the agreement between gestational age and the fetal measurements which are currently used to estimate fetal age.  相似文献   

9.
OBJECTIVE: To determine pharmacokinetics of troglitazone in healthy cats after i.v. and oral administration of a single dose of the drug. ANIMALS: 5 healthy ovariohysterectomized adult cats. PROCEDURE: Using a randomized crossover design, cats were given 5 mg of troglitazone/kg of body weight i.v. and 40 mg of troglitazone/kg orally. Blood and urine samples were collected after drug administration, and concentrations of troglitazone in plasma and urine were determined by use of high-performance liquid chromatography. RESULTS: Area-moment analysis was used to calculate pharmacokinetic variables. Terminal phase half-life was 1.1 +/- 0.1 hours. Steady-state volume of distribution was 0.23 +/- 0.15 L/kg. After i.v. administration, clearance was 0.33 +/- 0.04 L/h/kg. Drug was not detected in urine samples. Mean bioavailability of orally administered troglitazone was 6.9%. CONCLUSIONS AND CLINICAL RELEVANCE: The overall disposition of troglitazone in cats was similar to that reported in other species, including humans. Troglitazone has low and variable oral bioavailability. Clearance of the compound is moderate. Little if any unchanged troglitazone is excreted in urine; thus, metabolism and biliary excretion play predominant roles in elimination of the drug. On the basis of troglitazone pharmacokinetics in healthy cats, as well as on the basis of pharmacodynamics of the drug in humans and other animals, a regimen that uses a dosage of 20 to 40 mg/kg administered orally once or twice per day to cats will produce plasma concentrations of the insulin-sensitizing agent that have been documented to be effective in humans.  相似文献   
10.
OBJECTIVE: To determine the pharmacokinetics of metformin in healthy cats after single-dose IV and oral administration of the drug. ANIMALS: 6 healthy adult ovariohysterectomized cats. PROCEDURE: In a randomized cross-over design study, each cat was given 25 mg of metformin/kg of body weight, IV and orally. Blood and urine samples were collected after drug administration, and concentrations of metformin in plasma and urine were determined by use of high-performance liquid chromatography. RESULTS: Disposition of the drug was characterized by a three-compartment model with a terminal phase half-life of (mean +/- SD) 11.5+/-4.2 hours. Metformin was distributed to a small central compartment of 0.057+/-0.017 L/kg and to 2 peripheral compartments with volumes of distribution of 0.12+/-0.02 and 0.37+/-0.38 L/kg. Steady-state volume of distribution was 0.55+/-0.38 L/kg. After IV administration, 84+/-14% of the dose was excreted unchanged in urine, with renal clearance of 0.13+/-0.03 L/h/kg; nonrenal clearance was negligible (0.02+/-0.02 L/kg). Mean bioavailability of orally administered metformin was 48%. CONCLUSIONS: The general disposition pattern of metformin in cats is similar to that reported for humans. Metformin was eliminated principally by renal clearance; therefore, this drug should not be used in cats with substantial renal dysfunction. CLINICAL RELEVANCE: On the basis of our results, computer simulations indicate that 2 mg of metformin/kg administered orally every 12 hours to cats will yield plasma concentrations documented to be effective in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号