首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  1篇
水产渔业   23篇
  2017年   2篇
  2016年   2篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Rotifers, Brachionus plicatilis, fed baker's yeast and a lipid emulsion (High DNA Super Selco, INVE Aquaculture NV Systems SA, Belgium), were harvested and fed Isochrysis galbana for 72 h, the nutrient composition was analysed during this period. The enrichment effect on the rotifers following transfer to I. galbana was most pronounced for ascorbic acid and thiamin. I. galbana seemed to contribute very little as a source of the lipid-soluble vitamins. Most of the minerals and trace elements were unaffected by the transfer to I. galbana, but Fe, Mn, As and Cd increased, Cu and Ni decreased whereas the effect on Cr and Mo were uncertain. The fatty acid composition of the rotifers changed towards the composition of I. galbana during the experimental period. Intermediate glycogen levels were measured in the rotifers at all sampling times. With the exception of lysine, serine and proline, all amino acid levels seemed to be unaffected by the transfer to I. galbana. This study showed that transfer of rotifers to microalgae (I. galbana) feeding had a positive effect on nutritional value. Macronutrients were maintained at adequate levels, and algal feeding improved the nutritional quality of rotifers with respect to water-soluble vitamins. Changes in rotifer nutrient composition are discussed in relation to nutritional requirements of fish larvae.  相似文献   
2.
The objective of the present study was to evaluate the effect of fish meal quality on growth, feed conversion and protein utilization in common wolffish. Anarhichas lupus L. The study involved comparison between low-temperature-processed (Norse-LT) and regular fish meal (NorSeaMink) included in dry pellets. Results obtained for these dry feeds were compared with those obtained using moist feed containing squid mantle. The results show better growth rate, feed conversion factor, protein efficiency rate, (PER) and productive protein values (PPVs), when using low-temperature-processed meals compared with regular fish meals in feed to wolffish. No specific differences were found in growth rate and feed conversion factor between fish fed diets containing low-temperature-processed meal or squid mantle. Whole body lipid content was highly influenced by dietary content. No effect of dietary moisture content was demonstrated in this study.  相似文献   
3.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   
4.
Due to its traditionally good availability, digestibility and high content of n ? 3 HUFA, fish oil is the main lipid source in fish feeds. However, world demand for this product has grown significantly in recent years, whereas its production, based on fisheries landings, is static. The purpose of the present study was to assess the effect of partial replacement of fish oil in compound diets for gilthead seabream and seabass, by several vegetable oil sources, on growth, dietary fatty acid utilization and flesh quality. Five iso‐energetic and isoproteic experimental diets were formulated (25% lipid content). Fish oil was the only added lipid source in the control (FO) diet, and it was included in the other experimental diets at a level high enough (40% of FO diet) to keep the n ? 3 HUFA levels well over 3% in order to cover the essential fatty acid requirements of these species. Fish oil was replaced by soyabean oil (SO), rapeseed oil (RO) and linseed oil (LO) or a mixture (Mix) of them. Feed intake in all dietary groups was in the range of results obtained for commercial diets in both species, and growth and feed utilization were very good. The results show that, providing a minimum content of essential fatty acids in the diet, it is possible to replace up to 60% of the fish oil by SO, LO and RO or a mixture of them in diets for seabream and seabass, without compromising fish growth. Fatty acid composition of liver and muscle reflected that of the diet, but utilization of dietary lipids differed between these two tissues and was also different for the different fatty acids. Despite reduction in dietary saturated fatty acids by the inclusion of vegetable oils, their levels in fish liver were as high as in fish fed the fish oil diet, whereas, in muscle, levels were reduced according to that in the diet. Linoleic and linolenic acids were accumulated in the liver proportionally to their levels in the diet, suggesting a lower oxidation of these fatty acids in comparison to other 18C fatty acids. Regarding eicosapentaenoic acid (20 : 5n ? 3; EPA), docosahexaenoic acid (22 : 6n ? 3; DHA) and arachidonic acid (20 : 4n ? 6; ARA), these essential fatty acids were reduced in the liver at a similar rate, whereas DHA was preferentially retained in the muscle in comparison with the other fatty acids, denoting a higher oxidation particularly of EPA, in the muscle. Some other PUFA increased despite their low dietary levels in seabream fed LO diets and in seabass fed SO diet, suggesting the stimulation of delta‐6 and delta‐5 desaturase activity in marine fish. Despite differences in fatty acid composition, fillet of fish fed vegetable oils was very well accepted by trained judges when assessed cooked.  相似文献   
5.
This study evaluated the effects of fish oil (FO) replacement by vegetable oils [soybean oil (SO), rapeseed oil (RO), linseed oil (LO)] and subsequent feeding with FO on the liver morphology of sea bream. A short-term trial (3 months) and long-term trial (6 months) were carried out feeding sea bream with the following experimental diets: FO100%; SO60% + FO40%; RO60% +FO40%; LO60% + FO40%; SO + RO +LO60% + FO40%. Finally, all groups from the long-term trial were fed with FO100% for 95 days (washout period). Liver samples were taken for histological and biochemical studies. In both the short- and long-term trials, livers of sea bream fed LO60% and SO + RO + LO60% showed a similar hepatic morphology to that observed in fish fed FO100%. In contrast, sea bream fed SO60% showed an intense steatosis, with foci of swollen hepatocytes containing numerous lipid vacuoles. After the washout period, a considerable reduction of the cytoplasmic vacuolation and the lipid vacuole accumulation were observed in the livers of fish fed the different experimental diets. The results of this study suggested that the type of non-essential fatty acid, characteristic of vegetable oils, induces the appearance of steatosis in the following order: linoleic acid > linolenic acid > oleic acid. However, the liver alterations found during the experimental periods with vegetable oils are reversible when the fish are re-fed with a balanced diet (FO100%), indicating the non-pathological character of these histological changes.  相似文献   
6.
Juvenile Atlantic cod (Gadus morhua) were fed extruded feeds formulated to contain 360–660 g kg?1 protein, 80–280 g kg?1 lipid and 80–180 g kg?1 starch at feeding frequencies of either once per day or every second day to satiation. The trial was conducted at 8 °C and lasted for 28 weeks during which fish were weighed five times at regular intervals. Sampling for proximate analysis was performed at the start, after 12 weeks and at the end of the trial. Fish grew from an average weight of 192 g to between 750 and 866 g, with growth being negatively affected by low dietary protein concentration. High dietary starch concentrations had some negative effects on growth, whereas changes in dietary fat concentration had no significant effect on growth. Liver indices (at the end of the experiment) varied between 80 and 170 g kg?1, and there was a negative correlation between the ratio of protein to fat and liver index. Feed conversion ratio (FCR) ranged between 0.74 and 0.88, and feed utilization improved with increasing concentrations of dietary protein and fat. Increasing dietary starch concentrations resulted in poorer feed utilization. To achieve good growth and protein retention, and avoid excessive liver size in juvenile cod, feeds should contain 500–600 g kg?1 crude protein, 130–200 g kg?1 lipid and <150 g kg?1 starch.  相似文献   
7.
The effects of dietary vitamin C on maturation and egg quality of cod Gadus morhua L. have been investigated. The broodstock groups were fed three different levels of vitamin C mixed into a commercial dry pellet. The experimental feeding started three months prior to the spawning season. Naturally spawned eggs were collected and analyzed with regard to viability, biochemical composition and physical characteristics. Differences in free amino acid profile, egg strength and neutral buoyancy were found, whereas no effects on vital parameters, such as fertilization rate and survival rate, were detected.  相似文献   
8.
Atlantic halibut larvae (120 mg) were weaned to formulated diets with different supplementations of ascorbate- poly-phosphate, ApP (300, 2000 and 3000 mg ascorbic acid (AA) equivalents kg−1 diet). The experiment lasted for 50 days with cofeeding of enriched Artemia and formulated diets during the first 30 days. During the last 20 days, only formulated diets were offered to the fish. One control group was fed only Artemia (770 mg AA kg−1 dry weight) during the entire experimental period. The specific growth rate during the 50 days was ≈ 4.5% day−1 and the mean weights in all dietary groups were ≈ 1 g when the experiment was terminated. No differences in mean weight and mortality were observed between the groups fed formulated diets and that fed Artemia during the experiment. The fish size in the groups fed formulated diets ranged between 0.10 and 3.05 g and this differed from the Artemia group where the size ranged between 0.35 and 1.35 g. Dietary levels of ApP had no positive effect on growth and survival. The retention of AA was significantly higher in the groups fed high dietary levels of ApP. Apparently, the bioavailability of high dietary levels of ApP appeared to be low for young halibut. After stressing the fish using a high-salinity challenge test, no significant difference in survival occurred among the dietary groups. Cortisol levels in plasma recorded 3 h post stress was significant lower in the Artemia group compared with the groups fed the formulated diets.  相似文献   
9.
The present study investigated the short-term (5 months) effect of replacing dietary marine oils with vegetable oils on the development of arteriosclerotic changes in the heart of Atlantic salmon, Salmo salar. The experiment was performed as a randomized observer-blinded and controlled trial. Farmed Atlantic salmon were randomly sampled from a study population containing 900 individuals. The salmon were divided into three groups and given diets with either 100% fish oil (Diet 1), a 50/50% mixture of fish oil and rapeseed oil (Diet 2) or 100% rapeseed oil (Diet 3). Ten sexually immature salmon from each dietary group were sampled in March and August 2002. Additionally, 47 sexually mature wild salmon were randomly collected in mid-September 2001. Serial histological sections were taken from the bulbus arteriosus and ventricle wall for histopathological evaluation of the coronary arteries and myocardium. No significant differences in mean coronary changes recorded by the main variable 'mean range lesion' (MRL) were detected between the groups in March or August. MRL increased significantly between March and August with Diet 2 (P < 0.01), was nearly significant with Diet 3 (P = 0.06) and was unchanged with Diet 1. This pattern coincided with the Diet 2 group having the highest increase in heart weight. MHC class II immunoreactive cells in the coronary changes were detected in sections from one individual in each group. Heart weight was the most dominant variable in the data set and explained linearly 15.5% of the variation in MRL. Body weight, fish length and heart weight were all significantly, positively and linearly correlated to MRL. The Diet 2 group had the highest growth rate and also exhibited a significant increase in MRL. The possible influence of diet composition on weight gain and MRL needs to be further elucidated. Increase in heart weight seems to be the dominating predictor of the appearance of MRL in Atlantic salmon. However, the present results cannot exclude the possibility that differences in fatty acid composition of fish feed can influence the development of arteriosclerotic changes in Atlantic salmon.  相似文献   
10.
As the supply of marine fish oil is becoming a limiting factor in the production of Atlantic salmon (Salmo salar), new diets and alternative sources of energy are being tested. Plant oils are natural potential candidates to replace fish oil, but the different levels of essential polyunsaturated fatty acids may influence the health and growth of salmon. In this study, we have investigated the resistance to transport stress and bacterial infection, phagocytic activity in head kidney macrophages and eicosanoid metabolism in salmon fed three different diets. In high-energy fishmeal based diets, 50% and 100% of the supplementary fish oil (FO) was replaced with soybean oil (SO). The three dietary groups were fed for 950 day-degrees at 5 °C (27 weeks) and 12 °C (11 weeks) before challenging the fish with Aeromonas salmonicida, analyzing the lipid composition of head kidney and examining macrophage function in vivo and in vitro. Dietary fatty acids affected the lipid composition of the kidney. The level of eicosanoid precursor’s 20:4n-6 and 20:3n-6 were 3 and 7-fold higher in the 100% SO group compared with the FO group. The total fraction of n-3 lipids in kidney was 19% in the SO group, compared to 16% and 12% in the 50% or 100% SO groups, respectively. However, the production of leucotriene B4 (LTB) and prostaglandin E2 (PGE) immunoreactive materiel from exogenously added arachidonic acid in head kidney macrophages was only affected by the composite diet (increased) at 5 °C. In addition, the phagocytic activity of kidney macrophages in vivo and in vitro was not affected by diet. No effect of diet was observed on transport stress or susceptibility to a bacterial infection with Aeromonas salmonicida. Atlantic salmon therefore seems to tolerate a diet solely based on soybean oil as lipid source, without any detrimental effects on growth, health and immune functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号