首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水产渔业   1篇
畜牧兽医   1篇
  2015年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
2.
Swamp buffalos are becoming endangered due to reproductive inefficiencies. This is of concern because many countries depend heavily on their products. Somatic cell nuclear transfer (SCNT) is a potential strategy for preserving endangered species. To date, SCNT in swamp buffalo has succeeded in the creation of blastocyst embryos. However, development to term of SCNT swamp buffalos is extremely limited, and only 1 live birth has been reported. An abnormal epigenetic mechanism is suspected to be the cause of developmental failure, as is also seen in other species. The DNA methylation and histone acetylation are key players in epigenetic modification and display marked variability during embryonic preimplantation development. Knowledge of epigenetic modifications will aid in solving the developmental problems of SCNT embryos and improving reproductive technology in the swamp buffalo. The objective of this study was to determine the relationship between preimplantation embryonic development and 2 epigenetic patterns, global DNA methylation and histone acetylation, in SCNT and in vitro-fertilized (IVF) swamp buffalo embryos. In addition, we examined the correlations between those 2 mechanisms in the SCNT and IVF swamp buffalo embryos throughout the developmental stages using double immunostaining and quantification of the emission intensities using confocal microscopy. We discovered an aberrant methylation pattern in early preimplantation-stage swamp buffalo SCNT embryos. In addition, greater variability in the DNA methylation levels among nuclei within SCNT embryos was discovered. Hyperacetylation was also observed in SCNT embryos compared with IVF embryos at the 4- and 8-cell stages (P < 0.05). Dynamic changes and interplay between these 2 epigenetic mechanisms could be crucial for embryonic development during the early preimplantation period. The aberrancies uncovered here may contribute to the low efficiency of SCNT.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号