首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  8篇
农作物   1篇
水产渔业   2篇
  2020年   1篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Soil organic matter (OM) stabilization by the mineral phase can take place through sorption and aggregation. In this study we examined both of these processes, (i) organic carbon (OC) sorption onto clay‐sized particles and (ii) OC occlusion in silt‐size aggregates, with the objective of evaluating their relative importance in OM storage and stabilization in soil. We studied two loamy soil profiles (Haplic Luvisol and Plinthic Cambisol) currently under agricultural use down to a depth of 2 m. Our approach was based on two parallel fractionation methods using different dispersion intensities; these methods isolated a free clay fraction (non‐occluded) and a clay fraction occluded within water‐stable silt‐size aggregates. The two clay fractions were analysed for their C content and 14C activity. The proportion of sorbed OC was estimated as OC loss after hydrofluoric acid (HF) demineralization. Our results showed an important contribution to SOM stabilization by occlusion of OC into silt‐size aggregates with depth through both soil profiles. In the Haplic Luvisol, OC associated with clay and located in silt‐size aggregates accounted for 34–64% of the total soil OC, whereas in the Plinthic Cambisol this occluded material represented 34–40% of total OC. In the Haplic Luvisol, more OC was located in silt‐size aggregates than was sorbed onto clay‐size minerals, suggesting that silt‐size aggregation plays a dominant role in OC storage in this soil. In the Plinthic Cambisol, the abundance of sorbed OC increased with depth and contributed more to the stored C than that associated with silt‐size aggregates. Radiocarbon dating of both clay fractions (either occluded within silt‐size aggregates or not) suggests, in the case of the Plinthic Cambisol, a preferential stabilization of OC within silt‐size aggregates.  相似文献   
2.
Andosols are characterised by high organic matter (OM) content throughout the soil profile, which is mainly due to the stabilisation of soil organic matter (SOM) by mineral interactions. The aim of the study was to examine whether there were differences in the chemical composition of mineral-associated SOM and free OM in the top A horizon and in the subsoil (horizons below the A11 horizon). Our experimental approach included the replicated sampling of a fulvic and an umbic Andosol under pine and laurel forest located on the island of Tenerife with a Mediterranean sub-humid climate. We determined the extent of the organo-mineral interactions by comparing the sizes of the light (free) and heavy (dense) soil fractions obtained by physical separation through flotation in a liquid with a density of 1.9 g cm–3. We determined the elemental and isotopic composition of both fractions and analysed their chemical composition by analytical pyrolysis. The elemental and isotopic composition showed similar values with depth despite the different vegetation and climatic conditions prevailing at the two sites. Carbon (C) stabilised by mineral interactions increased with depth and represented 80–90% of the total C in the lowest horizons. The heavy fractions mainly released N-containing compounds upon analytical pyrolysis, whereas lignin-derived and alkyl compounds were the principal pyrolysis products released from the light fractions of the top- and subsoil horizons. Principal component analysis showed that the chemical composition of OM stabilised by mineral interaction differs in the different horizons of the soil profile. In the A horizons, the chemical composition of this OM was similar to those of the light fractions, i.e. litter input. There was a gradual change in the bulk molecular composition from a higher contribution of plant-derived molecules in the light and heavy fractions of the A horizon to more microbial-derived molecules as well as black C-derived molecules at depth. We conclude that transport processes in addition to decomposition and possibly in situ ageing affect the chemical composition of mineral-associated OM in subsoils.  相似文献   
3.
Effective indicators of plant nitrogen (N) nutrition are needed to improve N management in grasslands. This is particularly the case for mixtures that rely on N fixation by legumes as a major N input, because no reference tool such as the nitrogen nutrition index (NNI) exists under these conditions. The aims of this study were to test the reliability of a plant-based index, the N concentration of upper leaves in the canopy (Nup), as a possible alternative for NNI in both pure and mixed grasslands. Data were gathered from four experiments covering a range of pure and mixed grasslands under different N fertilization levels. A cross-validation of Nup predictions against NNI in pure stands, and against two NNI-derived indices in mixtures, was performed. The Nup values appeared to be linearly related to NNI in pure stands of both grasses and legumes. The relationship was identical for the two groups of species and explained up to 86% of NNI variability. In mixtures, Nup also displayed a linear relationship with the two other tested indices, explaining 65% and 78% of variability. The conclusions of the three indices diverged with respect to strongly unbalanced mixtures, where the assumptions regarding the computation of NNI-derived indices were not met. Excluding these situations, the overall relationship between Nup and NNI proved to be identical for mixtures and pure stands. The results suggest that Nup is a valid criterion for plant N nutrition which applies to a broad range of grassland species and to mixture conditions.  相似文献   
4.
The tilapia, Oreochromis mossambicus, shows a short ovarian cycle of 24-26?days in nonmouthbrooding condition. In this study, the stripped female O. mossambicus were exposed to repeated mild acute stressors such as handling, chasing, frequent netting and low water levels daily for a period of 26?days. The follicular dynamics did not show significant difference during previtellogenic phase (day 12), whereas the mean number of stage IV (vitellogenic) follicles remained significantly lower compared with controls at the end of vitellogenic phase (day 18). The stage V (vitellogenic, preovulatory) follicles were completely absent in contrast to their presence in controls prior to spawning (day 23). The control fish spawned spontaneously after 24?days and entered mouthbrooding phase, whereas those exposed to stressors did not spawn. Furthermore, the serum levels of estradiol (E(2)) remained significantly lower concomitant with a significant increase in the serum cortisol concentration during vitellogenic and prespawning phase compared with those of the controls. The LH cells in the PPD of the pituitary gland showed weak immunoreactivity through vitellogenic and prespawning phase in fish exposed to stressors indicating the diminished secretory activity in contrast to the intensely stained ir-material in controls. The study reveals the disruptive effects of aquacultural stressors on the spawning cycle through suppression of LH and E(2) secretion along the pituitary-ovary axis. The results suggest that the ovarian stress response depends on the phase of the cycle and that the interruption of the spawning cycle is due to inhibition of recruitment of preovulatory follicles in O. mossambicus.  相似文献   
5.
6.
We identified and quantified specific biomarkers of shoots and roots (cutin and suberin‐derived compounds, respectively) of three grassland species (Dactylis glomerata L., Festuca arundinacea Schreb. and Lolium perenne L.) in soil under different land use (grass, crop and bare soil) of the SOERE‐ACBB experimental site in Lusignan (France). We also investigated the fate of these markers in soil after conversion from grassland (C3 plants) to Zea mays L. (maize) (C4 plant) with natural 13C isotope abundances. Our results indicated that 9‐hydroxy hexadecanedioic acid and 8(9)(10),16‐dihydroxy hexadecanoic acid may be used as biomarkers for above‐ground biomass, whereas 1,22‐docosandioic acid, 22‐hydroxy docosanoic acid and 24‐hydroxy tetracosanoic acid might be the best below‐ground biomarkers for the plants investigated under the experimental conditions studied. The presence, concentration and shoot–root allocation pattern of these markers were different from those described for other species, which demonstrates the importance of verifying biomarker specificity for each species. Concentrations of cutin and suberin were largest in soil under maize and smallest under bare soil; this corresponded to the biomass added to the two soils. Suberin decreased by 40–64% and cutin by 24–40% during a 6‐year bare fallow, which indicates that root markers were more sensitive than shoot markers to degradation. Changes in 13C isotopic signatures of specific biomarkers after 6 years of maize showed a faster turnover of root than shoot biomarkers, in spite of the much smaller root inputs from maize than from grasses. The sequestration of suberin in soil was more rapid but less durable than that of cutin.  相似文献   
7.
In extremely acidic mining sediments of the Lusatian mining district, the alkalinisation process relies on organic C, which can serve as electron donor for microbially induced sulfate reduction. Plant material of the pioneer plant Juncus bulbosus is an important organic matter source in lake sediments. Therefore, decomposition of the plant tissue was assessed during the exposure of litterbags for 30 months in the 0-5 cm layer of waterlogged mining sediments, which have a pH between 2.5 and 3. The ash free dry weight (AFDW) and elemental content of the plant tissue were recorded several times during the exposure. Changes in chemical structure were analyzed by solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and the lignin component characterized by wet-chemical CuO oxidation. The AFDW accounted for about 34% of initial biomass after field exposure for 30 months. Mass loss of biomass occurred in two phases with decomposition rates varying between 30 and 430 mg AFDW d−1. The mass loss increased considerably after 5-7 months when litterbags were invaded by fresh J. bulbosus plants. With respect to higher mass loss, 13C CPMAS NMR spectroscopy, showed slight changes of the bulk chemical composition after 11 months, indicating that microorganisms present in the sediments or in the rhizosphere degrade plant material as a whole, rather than selectively. During the second phase from about 11 months until the end of the exposure period, contribution of O-alkyl C most probably assignable to easily degradable polysaccharides decreased. In contrast, the contribution of alkyl, aromatic and carboxyl C increased. CuO oxidation showed that the lignin component of J. bulbosus is degraded oxidatively during field exposure. Our results indicate that the exposed plant material is decomposed in the sediment due to changes in sediment conditions that followed plant invasion of the litterbags. It is suggested that the rhizosphere of J. bulbosus by its influence on the redox potential, pH and the microbial component plays a crucial role in organic matter degradation in acidic mining sediments.  相似文献   
8.
Opioid peptide β-endorphin (β-EP) plays a modulatory role in vertebrate reproduction. However, the role of opioid peptides in reproductive stress response is least understood in fishes. The aim of the present study was to determine the effect of different doses of β-EP on luteinizing hormone (LH) secretion in normal and the opioid receptor antagonist naltrexone (NALT) in stressed female tilapia Oreochromis mossambicus. Administration of 4 μg β-EP, but not 0.5 or 1.5 μg β-EP, daily for 22 days caused suppression of LH-secreting cells at the proximal pars distalis of the pituitary gland, concomitant with a significant reduction in the mean GSI and HSI in 4 μg β-EP-treated fish compared to controls. On the other hand, exposure of the fish to mild acute stressors for 22 days caused changes in the LH-secreting cells similar to that of high dose of β-EP, whereas administration of NALT attenuated these effects. Taken together, the results indicate that increased concentration of β-EP as may occur during stressful conditions can cause suppression of LH secretion, leading to the inhibition of spawning, and that treatment of NALT attenuates the stress-induced inhibition of LH secretion in fish.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号