首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
林业   5篇
  2篇
农作物   1篇
水产渔业   1篇
  2018年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 93 毫秒
1
1.
The maximum light use efficiency (LUE?=?gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].  相似文献   
2.
The compensation point of bidirectional NOx fluxes of plants is often determined in chamber measurements by varying the NOx concentration and searching for the point where the net flux is zero. We hypothesized that the compensation point can vary with changing conditions so much that one constant value is not sufficiently accurate. The compensation point for NOx fluxes of Scots pine was analysed with a model describing the NOx consumption and production processes. Consumption was assumed to occur via the stomata and on needle surfaces, with the rate depending on ambient concentration and degree of stomatal opening. Production was assumed to occur on the needle surfaces depending on solar UV-A irradiance. We used NOy flux data measured with two gas-exchange chambers in southern Finland to parameterize the model. The estimated compensation points increased with increasing UV-A irradiance and decreased with increasing stomatal conductance. With open stomata, it varied several ppb even under field conditions.  相似文献   
3.
A set-up with 161 photosynthetically active radiation (PAR) sensors was used to investigate spatio-temporal variations of irradiance for five horizontal arrays within a Scots pine canopy. The measured PAR was converted to CO2 exchange using of a shoot-scale photosynthetic response curve and the vertical distribution of the needle area. The net ecosystem exchange was simultaneously measured by the eddy covariance technique. The effect of spatial and temporal averaging of the PAR values and the number of sensors were analysed under different conditions as regards cloudiness and the shading by the foliage. In 1/2 h CO2 exchange values for the entire canopy, a maximum overestimation of 30% resulted from a spatial averaging over horizontal arrays of 2–5 m and occurred under clear-sky conditions and significant foliage shading. Under partly cloudy conditions, the largest overestimation occurred for a case of little shading and the inaccuracy resulting from 1/2 h temporal averaging exceeded that of spatial averaging.  相似文献   
4.
Maternal characteristics typically affect the recruitment of an exploited fish population. The size and age at maturity, as well as the effects of maternal traits on relative fecundity and egg dry weight, were studied in six exploited pikeperch populations in Finnish lakes. The among‐lake variation in the maternal characteristics was substantial. The estimated total length at maturity (L10, L50, L90) varied between 318–444, 403–423 and 444–527 mm, respectively, largely depending on the average growth rate and body condition of pikeperch. The estimated L50 was generally close to the recently imposed national minimum size limit (42 cm). The estimated age at maturity (A50) ranged from 4.2 to 6.9 year. Both relative fecundity and egg dry weight significantly increased with female size and age, indicating size‐ and age‐dependent maternal effects on egg characteristics and quantity, and emphasising the importance of large individuals for reproduction. The observed among‐population differences in the size‐dependent maternal influences highlight the need for stock‐specific management of pikeperch fisheries. The conservation of large females should be promoted to increase recruitment and reduce its variability.  相似文献   
5.
A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyyti?l?, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.  相似文献   
6.
Kankare  Maaria  Salminen  Tiina  Laiho  Asta  Vesala  Laura  Hoikkala  Anneli 《BMC ecology》2010,10(1):1-11

Background  

We compared records of the body mass and roosting behavior of Pacific dunlins (Calidris alpina pacifica) wintering on the Fraser River estuary in southwest British Columbia between the 1970s and the 1990s. 'Over-ocean flocking' is a relatively safe but energetically-expensive alternative to roosting during the high tide period. Fat stores offer protection against starvation, but are a liability in escape performance, and increase flight costs. Peregrine falcons (Falco peregrinus) were scarce on the Fraser River estuary in the 1970s, but their numbers have since recovered, and they prey heavily on dunlins. The increase has altered the balance between predation and starvation risks for dunlins, and thus how dunlins regulate roosting behavior and body mass to manage the danger. We therefore predicted an increase in the frequency of over-ocean flocking as well as a decrease in the amount of fat carried by dunlins over these decades.  相似文献   
7.
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookea s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyyti?l?, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.  相似文献   
8.
We examined interrelated xylem water tensions and embolism dynamics under field conditions by simultaneously monitoring ultra-acoustic emissions and changes in stem xylem diameter. Variation in stem xylem diameter was measured with linear displacement transducers to estimate variation in sap tension. Measured ultrasonic acoustic emissions coincided well with changes in xylem diameter, indicating that individual peaks in embolism occurred simultaneously with peaks in water tension. The good time resolution between measurements makes this method especially suitable for observing embolism dynamics on a short timescale. Longer lasting measurements can also be made to monitor inter-daily patterns in water tension and embolism because the techniques are non-destructive. Ultra-acoustic emissions occurred mainly during periods of decreasing stem xylem diameter, i.e., increasing water tension, when the water tension was high enough. Embolism also occurred during periods of increasing xylem diameter, i.e., decreasing water tension, but the number of embolizing conduits under these conditions was small.  相似文献   
9.
Wintertime photosynthesis and water uptake in a boreal forest   总被引:2,自引:0,他引:2  
Warm air in combination with frozen soil is a major cause of wintertime drought damage in evergreen plants in subalpine and boreal environments. We analyzed diurnal tree stem diameter variation (SDV), which reflects soil water uptake, canopy-level water vapor flux (Fw), stand photosynthesis (Ps), photosynthetically active radiation (PAR), soil and air temperatures (Ts and T air, respectively) and soil liquid water content (theta) to determine under what conditions photosynthesis is possible in wintertime and how crucial water uptake from soil is for photosynthesis. Measurements were made under field conditions in a Scots pine forest in southern Finland during winter 2002-2003. We found four wintertime periods when there was measurable Ps and SDV, the latter always starting 2-7 days after photosynthesis and both usually ending on the same day. Stand photosynthesis began when T air reached 3-4 degrees C and ended when T air dropped below -7 degrees C. The trees appeared to rely on stored stem water first and started taking up water from the soil a few days later, when the transpirational demand became strong enough. The more difficult it was to access soil water because of low Ts or low theta, the longer the trees used water stored in their stems. Even partial stem freezing did not prevent photosynthesis or soil water uptake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号