首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
农作物   2篇
畜牧兽医   1篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
2.
In this study, cotton/nylon blended fabrics were treated with atmospheric air plasma at various times (30–60 s) and were subsequently printed with pastes containing carbon black nanoparticles. Properties of plasma treated fabrics such as visible-near infrared (Vis-NIR) reflectance, water contact angle, air permeability, and color fastness were measured. It was shown that increasing plasma treatment time decreases reflection level of treated fabrics in Vis-NIR region. Plasma treatment also enhanced the hydrophobicity of cotton/nylon fabrics observed by an increase in water contact angle. Plasma treated samples for 60 s demonstrated lower air permeability than those treated for 30 s. Furthermore, printed samples possessed acceptable levels of fastness against washing, light and crocking.  相似文献   
3.
Tuning the level of visible and near infrared (NIR) reflectance of textile surfaces is crucial for making them undetected in each environment. In this regard, samples of cotton/nylon fabrics were printed using a mixture of some special pigments and carbon black (CB) nanoparticles to produce brown, olive green and khaki shades which are present in concealment patterns of textiles employed in deserts. The effect of CB nanoparticles on Vis/NIR reflectance, air permeability, perspiration, light, wash fastnesses, and colorimetric values of each printed sample were evaluated. The presence of CB nanoparticles in printing formulations was found to cause significant decline in Near Infrared (NIR) reflectance of samples. The results showed that air permeability of samples printed containing CB nanoparticles are higher than samples printed with no CB particles. Absorbing phenomenon imposed by CB nanoparticles was fast against washing and perspiration, although printed samples indicated high to moderate light fastness. Furthermore, detectable change in visible appearance of the printed patterns was the main point of concern even at concentrations as low as 0.05 g/kg CB in printing formulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号