首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  1篇
农作物   2篇
园艺   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 9 毫秒
1
1.

Background  

Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species.  相似文献   
2.
The effects of drought and heat stress on quality parameters of wheat (Triticum aestivum) cultivars were studied under field conditions in a 2-year trial (2009–2010) in northwest Mexico. Under no stress conditions, rapid small-scale parameters [protein (GP; FP) content, SDS sedimentation (SDSS), mixograph peak time (MPT), swelling index of glutenin (SIG), and lactic acid retention capacity (LARC)] showed significant relationship with gluten strength (alveograph energy, W) and bread loaf volume (LV). SIG and LARC were better than SDSS and MPT for predicting W, while SDSS was better than W and SIG for predicting bread LV. Most quality traits were primarily controlled by genotype (G), although environment (E) and G × E also had significant effects. Heat and drought stress showed contrasting effects on LARC, MPT, alveograph parameters [tenacity (P), extensibility (L), P/L ratio, W] and LV. Increase in P and decrease in L resulted in higher tenacity (larger P/L), which may explain the smaller loaf volume under drought stress. In contrast, decrease in P and increase in L, may explain the improved bread volume observed under heat stress. It is advisable to select for wheat quality under both favorable and abiotic stress conditions to identify genotypes with quality stability across environments.  相似文献   
3.
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions.  相似文献   
4.
Gluten strength is the main factor determining the rheological and processing properties of wheat. Rapid, small‐scale tests that can indirectly predict gluten strength are extremely important for wheat‐breeding selection, particularly when using pedigree methodology. The efficiency and reliability of three small‐scale tests (SDS sedimentation volume [SDSS], swelling index of glutenin [SIG], and lactic acid retention capacity [LARC]) across three environments (E1, no stress; E2, drought stress; and E3, heat stress) were evaluated by using 15 common wheat and nine durum wheat cultivars. In the case of common wheat, SIG highlighted its advantage for predicting gluten strength, even under stress environments, compared with LARC and SDSS, whereas SDSS showed the best relationship with bread loaf volume. For durum wheat, SIG showed the best predicting value in E1 and E3; however, under drought stress, SDSS, SIG, and LARC all lost their good ability for predicting gluten strength in durum wheat, which needs further investigation. Also, the comparison between two mixograph parameters (mixograph peak time and mixograph peak integral) for predicting gluten strength and the suitability of testing SIG and LARC with whole meal (or semolina) instead of refined flour were also investigated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号