首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
农学   2篇
  1篇
综合类   3篇
农作物   1篇
畜牧兽医   1篇
植物保护   1篇
  2016年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1985年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
簇毛麦抗白粉病基因的RAPD及RFLP标记   总被引:1,自引:0,他引:1  
 分析了来自前苏联簇毛麦及其抗病衍生系的抗白粉病基因对不同生理小种的抗性反应。用120个随机引物对6D/6V代换系Pm930640进行RAPD分析,检测到5个引物OPAN03、OPAI01、OPAL03、OPAD07和OPAG15,分别在大约1 700、700、750、480和580 bp处有区别于小麦亲本的多态性条带。对Chancellor×Pm930640 F2群体进行OPAN03、OPAI01和OPAL03等3个RAPD标记与抗白粉病基因的连锁分析,表明这些标记同簇毛麦的抗白粉病基因是连锁的。对大部分分别含有Pm1-Pm20的已知抗病基因、含有簇毛麦抗病基因及其相关亲本的29个小麦品系进行RAPD标记分析。结果表明,这些标记不仅可以鉴定簇毛麦的抗病基因,而且可以判断其遗传背景。OPAL03750仅出现在含有前苏联簇毛麦6VS染色体的抗病材料中,可作为区别于Pm21的分子标记。RFLP标记的结果也表明两个不同簇毛麦的6VS染色体有明显的多态性。  相似文献   
2.
The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates of Bluemerie graminis. Polymorphisms were revealed between 6D/6V substitution line Pm930640and its pedigree parents using five RAPD markers of OPAN031700, OPAI017oo, OPAL03750, OPAD07480 and OPAG1558oscreened out from 120 random 10-mers primers. Three RAPD markers of OPAN03, OPAI01 and OPAL03 were linked with the resistance gene by analysis of F2 population of Chancellor×Pm930640. Analysis of 29 wheat lines including part of lines conferring the known genes from Pm1 to Pm20 respectively, lines conferring resistance gene from two H. villosaaccessions and the related wheat parents, were analyzed and the results showed that these markers not only linked to thegene resistant to powdery mildew from H. villosa, but also detected different genetic backgrounds. OPAL03750 can beused as the marker to distinguish the different resistant lines from two H. villosa accessions because it was only observedin the materials from H. villosa of the former Soviet Union. RFLP analysis also showed the polymorphisms between twoH. villosa accessions and their derived resistant lines.  相似文献   
3.
The wild tetraploid wheat species Tr$$ (Zhuk) Zhuk Var. araratieum is a source of pest resistance genes for T$$ aesti$$ L. Our objectives were to describe the breeding behaviour of T.arartuititm when backcrossed to common wheat and transfer resistance to leaf rust (caused by Pu$$) and powdery mildew (caused by Blumeria $$wheat. Crosses were made between five wheat genotypes and $$ accessions. Fertifity and chromosome numbers of BC$$; plants were determined. Resistance to leaf rust was transferred toBC2 -derived families from 10 different T’ararati$$an accessions. Leaf rust resistance genes in nine T. araratieum accessions can be assigned to at least four loci. Leaf rust resistance transferred from three accessions was inherited in the hexaploid derivatives as a single. $$ gene in each case. Resistance to powdery mildew was also detected in the T. araratie$$ backcross derivatives. Fertile hexaploid derivatives expressing T’araratieum-derived resistance genes can be recovered after two backcrosses to wheat cultivars.  相似文献   
4.
Shi AN  Leath S  Murphy JP 《Phytopathology》1998,88(2):144-147
ABSTRACT A major gene for resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici = Erysiphe graminis f. sp. tritici) has been successfully transferred into hexaploid common wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) from wild einkorn wheat (Triticum monococcum subsp. aegilopoides, 2n = 2x = 14, AA). NC96BGTA5 is a germ plasm line with the pedigree Saluda x 3/PI427662. The response patterns for powdery mildew resistance in NC96BGTA5 were tested with 30 differential isolates of B. graminis f. sp. tritici, and the line was resistant to all tested isolates. The analyses of P(1), P(2), F(1), F(2), and BC(1)F(1) populations derived from NC96BGTA5 revealed two genes for wheat powdery mildew resistance in the NC96BGTA5 line. One gene, Pm3a, was from its recurrent parent Saluda, and the second was a new gene introgressed from wild einkorn wheat. The gene was determined to be different from Pm1 to Pm21 by gene-for-gene and pedigree analyses. The new gene was identified as linked to the Pm3a gene based on the F(2) and BC(1)F(1) populations derived from a cross between NC96BGTA5 and a susceptible cultivar NK-Coker 68-15, and the data indicated that the gene was located on chromosome 1A. It is proposed that this new gene be designated Pm25 for wheat powdery mildew resistance in NC96BGTA5. Three random amplified polymorphic DNA markers, OPX06(1050), OPAG04(950), and OPAI14(600), were found to be linked to this new gene.  相似文献   
5.
6.
The effect of management of maize residues on the population of insects inimical to the establishment of alfalfa, Medicago sativa L., was examined 1 month after sowing. Alfalfa was sown in early and late April, and late May for 3 consecutive years in Centre County, Pennsylvania, USA. The sowings were made by conservation tillage (direct drilled into maize residue with minimal disturbance of soil) into three different maize residues after (1) silage, (2) silage-plus-winter rye cover and (3) grain. A fourth sowing was by conventional tillage (spring ploughing and harrowing maize residue) after grain. A pesticide, carbofuran (granular formulation) was applied at sowing to half of the plots. Methiocarb bait, a molluscicide, was applied as a split application to the same plots, one-half at sowing and the remainder 2 weeks later. Alfalfa plots in the silage-plus-rye maize residues were colonized with fewer insects than the other residue treatments. Excessive growth of rye in early spring that was not successfully suppressed by herbicide treatment produced vigorous rye plants and fewer alfalfa seedlings. Consequently, silage plus rye had the lowest yield of alfalfa in early April sowings in 2 out of 3 years. Insects known to feed on alfalfa, such as tarnished plant bugs, Lygus lineolaris (Palsot de Beauvois), the plant bug, Plagiognathus politus Uhler, pea aphids, Acyrthosiphon pisum (Harris), and meadow spittlebugs, Philaenus leucophthalmus spumarius (L.), were collected by sweep net 1 month after sowing and less often in the silage-plus-rye treatment. These species were present in greater numbers in the other maize residues that had significantly more alfalfa forage. The insidious flower bug, Orius insidious (Say), and a damsel bug, Nabis americoferus Carayon, were collected in significantly greater numbers in the early April sowings, which corresponded with the peak populations of pea aphid. The potato leafhopper, Empoasca fabae (Harris), was most abundant in plots sowed in late April or late May. Pesticide treatment applied at the time of sowing had very little effect on numbers of insects collected by sweep net 1 month later in 1986 and 1988. However, pesticide treatment significantly increased yield by 280 kg ha?1 in 1987, even though sweep net collections of insects were not reduced by the pesticide treatment. Therefore, the beneficial effect of the pesticide could not be explained on the basis of the insects collected. The highest yields of alfalfa were obtained from the early April sowing into maize residues. This coincided with the time when the majority of alfalfa pests were less abundant than in later sowings; fewer pests were found on the sowings into silage-plus-rye residue. Also, when the rye forage yield was combined with the alfalfa yield, this became the most productive system.  相似文献   
7.
Summary Phytophthora root rot of alfalfa (Medicago sativa L.) is a serious problem in wet soils. This disease is caused by Phytophthora megasperma f. sp. medicaginis. The influence of soil-water interactions with P. megasperma f. sp. medicaginis and other factors on the severity of phytophthora root rot of mature alfalfa plants (10–12 weeks) was studied in greenhouse experiments. Severe and reproducible root rot was produced by subsurface (3–4 cm) placement of mycelial suspension. Soil saturation 3 days prior to inoculation followed by alternating 3-day wet (soil saturation) and 4-day dry (surface watering once a day) moisture regimes (for 30–40 days following inoculation) resulted in severe root damage.The severity of root rot was greater when the inoculation was done at an ambient temperature of 20°C than at 15°C. Water quality (tap water or deionized distilled water) had no effect on severity of infection. The isolates PT 78-3 (Minnesota) and TN-2 (Maryland) were equally effective in terms of severity of damage.The impact of excess soil water stress (described above) alone on the shoot and root dry weight as well as on shoot symptoms was similar to that of root rot stress. However, root symptoms showed a marked difference. A close examination of root symptoms is highly recommended to differentiate clearly the plant injury due to root rot from that due to excess soil water stress.  相似文献   
8.
AIM: To determine whether the retention time of curd in the abomasum of calves was influenced by supplementing milk with a plant-derived carbohydrate and amino acid supplement, evaluated non-invasively using ultrasonography.

METHODS: Female dairy calves aged between 2–6 days of age were sourced from a commercial farm in March 2013. All calves were fed whole milk until weaning (4?L per day); 21 calves were supplemented with a probiotic until 18 days of age, and thereafter with a plant-derived complex carbohydrate and amino acid supplement until weaning, and 22 calves were just fed whole milk. Treatment groups were balanced for age, weight and breed. At 9–14, 24–29 and 52–57 days of age, the abomasum of each calf was examined using ultrasonography immediately before and after feeding, 1 and 2 hours after feeding, and then at 30 minute intervals until curd was no longer visible in the abomasum. Abomasal volume and curd size were recorded to assess retention time of curd in the abomasum.

RESULTS: At 9–14 days of age, mean retention time of curd in the abomasum was similar (4.6 hours) in both groups. At 24–29 days of age, when the supplemented calves had been receiving the supplement for approximately 10 days, mean curd retention time was longer by 1.4 (SE 0.28) hours in supplemented compared with unsupplemented calves (p<0.001). At 52–57 days of age, mean retention time was longer by 0.7 (SE 0.34) hours compared to unsupplemented calves (p=0.05).

CONCLUSION: Using ultrasonography, changes in abomasal content could be followed non-invasively over time and it was demonstrated that the plant-derived complex carbohydrate supplement increased the curd retention time in the abomasum. We speculate that the increased retention time enables an increased availability of nutrients following a more complete digestion of milk, thereby improving animal performance.  相似文献   
9.
Genetic variation for forage yield of orchardgrass is abundant, but there are few reports of progress from selection for increased forage yield. The objective of this study was to estimate direct effects of selection from one cycle of half‐sib family selection for forage yield in orchardgrass. Eleven selected populations were compared with their parent populations within three maturity groups. Populations were evaluated under hay management at three locations and management‐intensive rotational grazing at two locations. Nine of the 11 selected populations differed, by an average of 7.4%, from their parent population in forage yield. Nine of the selected populations also showed changes in Drechslera leafspot reaction, all indicating a negative genetic correlation with forage yield. Selection for high forage yield tended to result in greater ground cover and later relative maturity. However, changes in net herbage accumulation (NHA) under rotational grazing were generally not significant and were uncorrelated with changes in forage yield, indicating that forage yield of hay plots is not correlated with the NHA of grazed plots. Although genetic gains in forage yield measured under hay management were very favourable relative to other reports from the literature, the lack of correlated progress under grazing management indicates that directed selection for NHA of orchardgrass should be conducted under grazing management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号