首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
林业   20篇
农学   10篇
基础科学   3篇
  53篇
综合类   8篇
农作物   21篇
水产渔业   10篇
畜牧兽医   38篇
园艺   2篇
植物保护   12篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   14篇
  2017年   14篇
  2016年   9篇
  2015年   2篇
  2014年   6篇
  2013年   22篇
  2012年   10篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有177条查询结果,搜索用时 78 毫秒
1.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   
2.
Stripe rust is a continuous threat to wheat crop all over the world. It causes considerable yield losses in wheat crop every year. Continuous deployment of adult plant resistance(APR) genes in newly developing wheat cultivars is the most judicious strategy to combat this disease. Herein, we dissected the genetics underpinning stripe rust resistance in Pakistani wheat germplasm. An association panel of 94 spring wheat genotypes was phenotyped for two years to score the infestation of stripe rust on each accession and was scanned with 203 polymorphic SSRs. Based on D' measure, linkage disequilibrium(LD) exhibited between loci distant up to 45 c M. Marker-trait associations(MTAs) were determined using mixed linear model(MLM). Total 31 quantitative trait loci(QTLs) were observed on all 21 wheat chromosomes. Twelve QTLs were newly discovered as well as 19 QTLs and 35 previously reported Yr genes were validated in Pakistani wheat germplasm. The major QTLs were QYr.uaf.2 AL and QYr.uaf.3 BS(PVE, 11.9%). Dissection of genes from the newly observed QTLs can provide new APR genes to improve genetic resources for APR resistance in wheat crop.  相似文献   
3.
This study was conducted to evaluate the simultaneous use of plant growth promoting rhizobacterium (QS1) and different combinations of urea-nitrogen and biogas slurry-nitrogen for improving growth, yield, and nutritional quality of field grown okra. The isolate QS1 was identified as Bacillus sp. QS1 based on its ribosomal ribonucleic acid (rRNA) sequence analysis. Results revealed that among the combinations, the application of 50% urea-nitrogen + 50% biogas slurry-nitrogen was optimal for improving crop performance. This combination significantly (p ≤ 0.05) promoted okra growth viz. plant height (69.63–80.03 cm), no of branches per plant (14–18), shoot fresh weight (86.66–136.25 g/plant), root fresh weight (22.5–26.58 g/plant), and fruit yield (8.5–13.5 kg/plot) compared to the plants receiving 100% urea-nitrogen. The interactive effective of this nitrogen combination and QS1 inoculation produced the highest growth and yield response. Similarly, the same treatment improved nitrogen, phosphorus, potassium, and protein contents in shoot and fruit of okra compared to other treatments.  相似文献   
4.
This study aimed to identify the potential allelopathic indigenous rice (Oryza sativa L. ssp. indica) varieties from Bangladesh using a performance study in a weed‐infested field and to assess the extent of allelopathic interference relative to resource competition in a glasshouse experiment. Six varieties – namely, “Boterswar,” “Goria,” “Biron” and “Kartiksail” as the most allelopathic, “Hashikolmi” as weakly allelopathic and “Holoi” as nonallelopathic – were raised following a nonweed control method. The infestation levels of weed species were calculated using Simpson's Diversity Index (SDI), which ranged from 0.2 to 0.56. However, a significant correlation coefficient (0.87, P < 0.001) was obtained from these field data compared with the root inhibition percentage from the laboratory bioassay, and the “Boterswar” variety was the most allelopathic. The interactions between the allelopathic variety “Boterswar,” weakly allelopathic variety “Hashikolmi” and Echinochloa oryzicola via a target (rice)‐adjacent (E. oryzicola) cogrowth culture were determined in a hydroponic arrangement. The relative competitive intensity (RCI) and the relative neighbor effect (RNE) values showed that the crop–weed interaction was facilitation for “Boterswar” and competition for “Hashikolmi” and E. oryzicola in rice/E. oryzicola cogrowth cultures. The allelopathic effects of “Boterswar” were much higher than the resource competition in rice/E. oryzicola cogrowth cultures. The converse was observed for “Hashikolmi.” Moreover, the mineral content of E. oryzicola was severely affected by “Boterswar”/E. oryzicola cogrowth cultures’ exudate solution. Therefore, the allelopathic potential of “Boterswar” variety might be useful for developing the weed‐suppressing capacity of rice, which will likely have a significant influence on paddy weed control.  相似文献   
5.
The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.  相似文献   
6.
7.
Since 1997, avian pneumovirus (APV) has caused estimated annual losses of $15 million to the Minnesota turkey industry. In order to develop an attenuated live vaccine against APV, we serially passaged a Minnesota isolate of APV (APV/MN/turkey/1-a/97) in vitro in cell cultures for 41 passages. Laboratory experiments with this high-passage virus (P41) indicated that the attenuated virus provided immunogenic protection to turkeys against challenge with virulent APV, although some birds showed mild to moderate dinical signs after inoculation. To reduce the residual pathogenicity of P41, while maintaining its immunogenicity, we decided to vaccinate turkeys with P41 in the presence of an immunomodulator, S-28828 (1-n-butyl-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-4-amine-hydrochloride), which is a potent cytokine inducer. The combined inoculation of S-28828 (5 mg/kg body weight) and P41 resulted in a significant reduction in the incidence of virus-induced clinical signs in comparison with birds that received P41 without immunomodulator (P < 0.05). Only 17% of birds inoculated with S-28828 + APV P41 showed mild respiratory symptoms at 5 days postinoculation as compared with 46% of the vaccinated turkeys that did not receive S-28828. Vaccination with either P41 or with P41 + S-28828 protected turkeys against dinical signs and viral replication after challenge with virulent APV. These results indicate that immunomodulators, such as S-28828, may act as good vaccine adjuvants that can reduce the pathogenicity but maintain the immunogenicity of partially attenuated vaccines.  相似文献   
8.
The Sepsis-Coagulant Axis: A Review   总被引:3,自引:0,他引:3  
Activation of coagulation is a normal component of the acute inflammatory response. Inflammatory cytokines initiate coagulation events locally at sites of inflammation by converting endothelium from an antithrombotic surface to a prothrombotic surface; by stimulating tissue factor production, which activates both the extrinsic and intrinsic coagulation systems; and by stimulating production of platelet-activating factors. The fibrinolytic system is initially activated but is subsequently inhibited. This results in a marked imbalance in coagulation and fibrinolysis resulting in a net procoagulant state. When thrombin generation and platelet activation exceed the body's capacity to inactivate or remove these factors, disseminated intravascular coagulation (DIC) results. DIC directly contributes to multiple organ failure and death associated with sepsis. Presently available treatments (ie, heparin and aspirin) are relatively ineffective in treating DIC; however, newer, more potent drugs may soon be available for clinical use.  相似文献   
9.
Jan  Sami  Khan  M. N.  Jan  Sofora  Zaffar  Aaqif  Rashid  Rizwan  Khan  M. A.  Sheikh  F. A.  Bhat  M. Ashraf  Mir  R. R. 《Genetic Resources and Crop Evolution》2022,69(2):661-676
Genetic Resources and Crop Evolution - Barley (Hordeum vulgare L.) is one of the principal cereal crops grown in Western-Himalayas of India. A set of 105 barley&nbsp;genotypes including 38...  相似文献   
10.
Genetically modified (GM) cassava is currently being developed to address problems of diseases that threaten the food security of farmers in developing countries. The technologies are aimed at smallholder farmers, in hopes of reducing the vulnerability of cassava production to these diseases. In this paper we examine barriers to farmers’ voice in the development of GM cassava. We also examine the role of a translational research process to enhance farmers’ voice, to understand the sources of vulnerability farmers in a group in Kenya’s Coast face, and to determine if their concerns are consistent with those of the scientists in agriculture addressing farmers’ needs. A two-way communication participatory process provided insights into the complex vulnerability context of farmers, their primary concerns with processing and markets of cassava in order to improve livelihoods, the lack of networks with two way communication flows, and the lack of information on GM technologies. The translational research engaged farmers and scientists in an iterative process where scientists are learning what farmers need, and farmers are learning about the potential benefits and risks from GM technologies, while at the same time expressing their concerns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号