首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   9篇
林业   14篇
  3篇
综合类   5篇
水产渔业   1篇
畜牧兽医   34篇
植物保护   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
2.
Fasciolosis is an endemic zoonotic parasitic disease with significant impacts on human health and both animal health and production. Early post-infection impacts on the host remain unclear. The objective of this study was to determine the changes, if any, to levels of endotoxin in cattle plasma in response to early-stage infection with Fasciola hepatica. Thirty-six (36) commercial bred cattle were experimentally infected with approximately 400 viable metacercariae. Plasma lipopolysaccharide (endotoxin) levels were examined on 24 occasions from 0 h before infection to 336 h after infection using the Limulus Amoebocyte Lysate chromogenic end point assay and compared with that of six (6) uninfected control animals. Peak lipopolysaccharide levels in infected animals were reached at 52 h after infection and returned to pre-infection levels at time 144 h after infection. Infected animals had significantly elevated lipopolysaccharide levels between 24 and 120 h after infection when compared to uninfected animals. The mean change in endotoxin units (EU)/mL over time after infection was statistically significant in infected animals. Elevations of lipopolysaccharide occurred in all infected animals suggesting a possible repeatable and titratable endotoxemia conducive to therapeutic agent model development.  相似文献   
3.
Bluetongue virus serotypes 1 and 3 infection in Poll Dorset sheep   总被引:1,自引:0,他引:1  
Objective To study the clinical signs following bluetongue virus serotypes 1 and 3 infection in Poll Dorset sheep.
Design A clinical and pathological study.
Procedure Twenty Poll Dorset sheep were inoculated with bluetongue virus serotypes 1 or 3, each inoculum having a different passage history. The sheep were examined daily and their clinical appearance and rectal temperatures recorded. Heparinised and non-heparinised blood samples were taken at intervals for virological and serological study. Gross pathological findings were recorded for several sheep at necropsy and tissue samples were collected from three sheep for virological studies.
Results All inoculated sheep developed clinical disease. The clinical signs and gross pathological changes varied considerably but were consistent with damage to the vascular endothelial system. There was a decline in the titres of infectious bluetongue virus and of antigen in tissues collected between 7 and 12 days after infection.
Conclusions The severity of disease was related to the speed of onset and duration of pyrexia and not the development or titre of viraemia. Generally, those animals with sensitive mouths, depression, coronitis, recumbency and reluctance to move were the most debilitated. Whole blood was the most reliable source of infectious virus from acutely and chronically infected and convalescent animals. However, tissue samples particularly spleen, collected from dead or killed animals suffering from either peracute or acute forms of disease were most appropriate for the rapid confirmation of a clinical diagnosis.  相似文献   
4.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal.  相似文献   
5.
Extrapolation of the effects of ozone on seedlings to large trees and forest stands is a common objective of current assessment activities, but few studies have examined whether seedlings are useful surrogates for understanding how mature trees respond to ozone. This two-year study utilized a replicated open-top chamber facility to test the effects of subambient, ambient and twice ambient ozone concentrations on light-saturated net photosynthesis (P(max)) and leaf conductance (g(l)) of leaves from mature trees and genetically related seedlings of northern red oak (Quercus rubra L.). Gas exchange measurements were collected four times during the 1992 and 1993 growing seasons. Both P(max) and g(l) of all foliage followed normal seasonal patterns of ontogeny, but mature tree foliage had greater P(max) and g(l) than seedling foliage at physiological maturity. At the end of the growing season, P(max) and g(l) of the mature tree foliage exposed to ambient ( approximately 80-100 ppm-h) and twice ambient ( approximately 150-190 ppm-h) exposures of ozone were reduced 25 and 50%, respectively, compared with the values for foliage in the subambient ozone treatment ( approximately 35 ppm-h). In seedling leaves, P(max) and g(l) were less affected by ozone exposure than in mature leaves. Extrapolations of the results of seedling exposure studies to foliar responses of mature forests without considering differences in foliar anatomy and stomatal response between juvenile and mature foliage may introduce large errors into projections of the response of mature trees to ozone.  相似文献   
6.
Inhibitors of cyclin‐dependent kinases, as roscovitine, have been used to prevent the spontaneous resumption of meiosis in vitro and to improve the oocyte developmental competence. In this study, the interference of oil overlay on the reversible arrest capacity of roscovitine in sheep oocytes as well as its effects on cumulus expansion was evaluated. For this, cumulus‐oocyte complexes (COCs) were cultured for 20 h in TCM 199 with 10% foetal bovine serum (Control) containing 75 μm roscovitine (Rosco). Subsequently, they were in vitro matured (IVM) for further 18 h in inhibitor‐free medium with LH and FSH. The culture was performed in Petri dishes under mineral oil (+) or in 96 well plates without oil overlay (?) at 38.5°C and 5% CO2. At 20 and 38 h, the cumulus expansion and nuclear maturation were evaluated under stereomicroscope and by Hoechst 33342 staining, respectively. No group presented cumulus expansion at 20 h. After additional culture with gonadotrophins, a significant rate of COCs from both Control groups (+/?) exhibited total expansion while in both Rosco groups (+/?) the partial expansion prevailed. Among the oocytes treated with roscovitine, 65.2% were kept at GV in the absence of oil overlay while 40.6% of them reached MII under oil cover (p < 0.05). This meiotic arrest was reversible, and proper meiosis progression also occurred in the Control groups (+/?). So, the culture system without oil overlay improved the meiotic inhibition promoted by roscovitine without affecting the cumulus expansion rate or the subsequent meiosis progression.  相似文献   
7.
In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E(CO(2))) or ambient (A(CO(2))) CO(2) treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO(2) and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E(CO(2)) on premature leaf senescence. Elevated CO(2) reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E(CO(2)) plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO(2)) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to ~40% less than A(net) in A(CO(2)) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E(CO(2)). While E(CO(2)) can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E(CO(2)) to temperate forest species during extreme weather events.  相似文献   
8.
Two of the major uncertainties in forecasting future terrestrial sources and sinks of CO2 are the CO2-enhanced growth response of forests and soil warming effects on net CO2 efflux from forests. Carbon dioxide enrichment of tree seedlings over time periods less than 1 yr has generally resulted in enhanced rates of photosynthesis, decreased respiration, and increased growth, with minor increases in leaf area and small changes in C allocation. Exposure of woody species to elevated CO2 over several years has shown that high rates of photosynthesis may be sustained, but net C accumulation may not necessarily increase if CO2 release from soil respiration increases. The impact of the 25% rise in atmospheric CO2 with industrialization has been examined in tree ring chronologies from a range of species and locations. In contrast to the seedling tree results, there is no convincing evidence for CO2-enhanced stem growth of mature trees during the last several decades. However, if mature trees show a preferential root growth response to CO2 enrichment, the gain in root mass for an oak-hickory forest in eastern Tennessee is estimated to be only 9% over the last 40 years. Root data bases are inadequate for detecting such an effect. A very small shift in ecosystem nutrients from soil to vegetation could support CO2-enhanced growth. Climate warming and the accompanying increase in mean soil temperature could have a greater effect than CO2 enrichment on terrestrial sources and sinks of CO2. Soil respiration and N mineralization have been shown to increase with soil temperature. If plant growth increases with increased N availability, and more C is fixed in growth than is released by soil respiration, then a negative feedback on climate warming will occur. If warming results in a net increase in CO2 efflux from forests, then a positive feedback will follow. A 2 to 4°C increase in soil temperature could increase CO2 efflux from soil by 15 to 32% in eastern deciduous forests. Quantifying C budget responses of forests to future global change scenarios will be speculative until mature tree responses to CO2 enrichment and the effects of temperature on terrestrial sources and sinks of CO2 can be determined.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号