首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2篇
综合类   16篇
畜牧兽医   28篇
园艺   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   6篇
  1993年   1篇
  1990年   1篇
  1976年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The potential impact of timber harvesting in the boreal forest on aquatic ecosystem water quality and productivity depends in part on the production of nutrients within the soil of the harvested catchment. Nitrogen supplied by organic matter decomposition is of particular interest because of the important role that N plays in biotic processes in surface waters, and in forest nutrition in general. Logging slash quality and input to the forest floor has the potential to influence N availability after harvest on clearcut sites. Net production of organic and inorganic-N and microbial biomass C and N concentrations were determined during a 90-day laboratory incubation at constant temperature and moisture. Incubated soils included F horizon and shallow mineral soil horizons (0-5 cm) from unharvested and full-tree harvested (2 and 12 growing seasons since harvest) boreal forest sites at the Esker Lakes Research Area (ELRA), in northeastern Ontario, Canada. In an ancillary experiment, black spruce foliage was added to unharvested forest floor material after 30 days during a 90-day laboratory incubation to simulate the influence of logging slash from full-tree harvesting on C and N dynamics. Twelve-year old clearcut F horizon material released on average 75 and 5 times more -N and 3 and 2 times as much inorganic-N than soil collected from unharvested and 2-year-old clearcuts, respectively. This increase in -N accumulation during the incubation was accompanied by decreases in both exchangeable -N and microbial biomass C and N levels. Net daily changes in microbial biomass N were significantly related to organic and inorganic-N accumulation or loss within the F horizon. Mineral soil release of inorganic-N was lower than release from the forest floor. Nitrate-nitrogen accumulation was lower, and -N accumulation was higher in mineral soil from unharvested sites when compared to 12-year-old clearcuts. Calculated harvest response ratios indicated that incubated mineral soil from the 12-year-old clearcut sites released significantly greater amounts of -N than 2-year-old clearcuts. Incorporation of black spruce needles into F horizon material reduced the production of organic and inorganic-N and increased microbial biomass N. Laboratory incubations of F horizon and shallow mineral soil from 12-year-old clearcuts suggested that these boreal soils have the capacity for increased inorganic-N production compared to uncut stands several years after harvesting. This has the potential to increase N availability to growing boreal forest plantations and increase N leaching due to greater -N levels in the forest soil.  相似文献   
5.
INDEPTH seismic reflection profiling shows that the decollement beneath which Indian lithosphere underthrusts the Himalaya extends at least 225 kilometers north of the Himalayan deformation front to a depth of approximately 50 kilometers. Prominent reflections appear at depths of 15 to 18 kilometers near where the decollement reflector apparently terminates. These reflections extend north of the Zangbo suture to the Damxung graben of the Tibet Plateau. Some of these reflections have locally anomalous amplitudes (bright spots) and coincident negative polarities implying that they are produced by fluids in the crust. The presence of geothermal activity and high heat flow in the regions of these reflections and the tectonic setting suggest that the bright spots mark granitic magmas derived by partial melting of the tectonically thickened crust.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号