首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
综合类   1篇
水产渔业   1篇
畜牧兽医   1篇
  2016年   1篇
  1999年   2篇
排序方式: 共有3条查询结果,搜索用时 265 毫秒
1
1.
Ten healthy dogs were fed 30 1.5 mm and 10 5 mm radiopaque markers (BIPS, MedID, Grand Rapids) mixed with sufficient quantities of a high fibre diet to meet 25% of their estimated daily caloric requirements. Abdominal radiographs were made at two hour intervals until 90% of the small and large markers had left the colon. The mean residence times (MRT) of each size of marker in the proximal, distal and total colon were calculated using kinetic analysis. The MRT's of the small markers were 4.9 hours (SD 4.4), 7.1 hours (SD 3.3) and 12.0 hours (SD 7.1) respectively. The MRT's of the large markers were not significantly different from the small markers except in the proximal colon where they were significantly shorter (3.2 hours, SD 2.3). Reference colonic filling and colonic transit curves for both sizes of markers were constructed. These may be useful to detect abnormal colonic transit in dogs.  相似文献   
2.
Simulation of Cotton Production for Precision Farming   总被引:1,自引:0,他引:1  
Most crop simulation models do not directly consider the spatial variability of inputs nor do they produce outputs that show the expected spatial variability of yield across a field. If such models were available for precision farming, then researchers could much better evaluate the effects of soil sampling densities to determine the number of samples necessary to adequately model a particular field. The objectives of this study were: (1) to design and implement a spatial simulation methodology for examining details of precision farming and (2) use this to evaluate the effects of different soil sampling resolutions on predicted yield and residual nitrates through spatially variable nitrogen applications. The GOSSYM/COMAX cotton growth model/expert system and the GRASS geographic information system were used to develop a spatial simulation that produces spatially variable outputs. Inputs to the model were collected from a 3.9-ha cotton field. Soil nitrate, a primary driver in fertilizer recommendations, was sampled on a 15.2-m regular grid for depths to 15 cm and on a 30.5-m regular grid at six 15-cm depth intervals (down to 90 cm). COMAX was used to determine spatially variable fertilizer recommendations. GOSSYM was used to simulate perfect application of these recommendations and predicted spatially variable yield and residual nitrates. Reductions in sampling density or resolution were simulated by systematically reducing the amount of data available to COMAX for calculating spatially variable fertilizer recommendations. GOSSYM subsequently used these recommendations (based upon less and less knowledge of soil nitrates) to simulate the effects of differing sampling resolutions on predicted yield and residual nitrates. For recommendations based upon a 15.2-m grid of inputs, 41.4 kg/ha of nitrate fertilizer produced 801.7 kg/ha of cotton and left an average of 9.4 ppm of nitrate in the soil profile. For a 30.5-m grid, 42.8 kg/ha of nitrate fertilizer resulted in a yield of 811.2 kg/ha and residual soil nitrate of 8.3 ppm. For 45.7-m and 61.0-m grids, the results were 43.3 kg/ha and 41.2 kg/ha of nitrate fertilizer, 755.3 kg/ha and 794.3 kg/ha of cotton, and 11.5 ppm and 8.1 ppm of residual soil nitrate, respectively. This study concluded that crop simulations and geographic information systems are a valuable combination for modeling the effects of precision farming and planning variable rate treatments. Simulation results indicate that excessive fertilization, while potentially damaging to the environment, may also have a negative impact on yield.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号