首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
园艺   1篇
  2020年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Landscape dynamics increasingly challenge agronomists to explain how and why agricultural landscapes are designed and managed by farmers. Nevertheless, agronomy is rarely included in the wide range of disciplines involved in landscape research. In this paper, we describe how landscape agronomy can help explain the relationship between farming systems and agricultural landscape dynamics. For this, we propose a conceptual model of agricultural landscape dynamics that illustrates the specific contribution of agronomy to landscape research. This model describes the relationship between three elements: farming practices, landscape patterns and natural resources. It can stimulate agronomists to deal with research issues in agricultural landscape dynamics and enhance the interdisciplinary integration of farming systems in wider landscape research. On these premises, we discuss the main research issues that will benefit from an active involvement of agronomy, to understand, but also to assess landscape dynamics and to design relevant decision support systems.  相似文献   
2.

The adoption of precision farming techniques (PFTs) has been widely studied targeting specific PFT or farming systems along with the potential benefits of these PFTs in terms of yield or input use. However, few studies have examined how PFTs are adopted and used at the farm level. In this study a preliminary investigation was made of on-farm PFT uses in the Oise region (northern France). Three main PFTs were identified in the area: Global Navigation Satellite Systems (GNSS) guidance, section control, and variable rate (VR) application. For each farm, the use of every PFT was defined by the technical characteristics of the equipment, the field operation(s) concerned, the targeted crop(s), the aim of the use, the PFT adoption drivers, and the perceived impacts by the farmers. These different variables were combined into a typology of PFT uses. The results show that most of the farms combined GNSS guidance for all technical operations and section control, whereas VR application was less common. Section control was largely used by farmers for liquid fertilizers and phytochemical spraying. The typology shows three to five types of use for each PFT, which differ in terms of technique adoption drivers, e.g. reducing on-farm work or adaptation to field morphology. According to literature, economic impacts were found to be the most frequent, however farmers seemed unable to quantify them. Social impacts such as reduced work time and fatigue were also frequent and are becoming the main motivation for using PFT on farms studied. Further research is needed to assess the use trajectories of PFT along with the motivations of each PFT use.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号