首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   13篇
  国内免费   2篇
林业   24篇
农学   29篇
基础科学   4篇
  83篇
综合类   26篇
农作物   33篇
水产渔业   4篇
畜牧兽医   65篇
园艺   9篇
植物保护   28篇
  2023年   2篇
  2022年   9篇
  2021年   11篇
  2020年   14篇
  2019年   13篇
  2018年   23篇
  2017年   20篇
  2016年   14篇
  2015年   9篇
  2014年   19篇
  2013年   35篇
  2012年   18篇
  2011年   16篇
  2010年   20篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   12篇
  2005年   8篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有305条查询结果,搜索用时 31 毫秒
1.
2.
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals’ normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.  相似文献   
3.
The factors influencing the decision of smallholder farmers to adopt new farming technologies were studied with reference to rubber–tea intercropping in Sri Lanka. Rubber–tea intercropping has been recommended previously to rubber farmers as a means to improve productivity and income during the early pre-tapping phase of rubber growth. Although crop trials have shown that the two crops are agronomically compatible and potentially produce a combined economic yield superior to the yield of a sole crop grown on the same area of land, there is little evidence of widespread adoption of this practice among smallholder farmers in Sri Lanka. The aim of the study was to determine the major factors that influence the decision to undertake rubber–tea intercropping and to construct a predictive model that describes the likelihood of adoption of intercropping by traditional smallholder rubber growers. A rapid rural appraisal (RRA) was undertaken based on semi-structured interviews of 90 smallholder farmers in the main rubber growing low wet zone of Sri Lanka. Among a number of factors shown to significantly influence the decision to intercrop tea with rubber, three were shown to operate independently, namely level of income, source of income (i.e. solely from own farm or from farm plus additional off-farm enterprises), and availability of land considered suitable for tea cultivation. A statistical model developed through correlation and logistic analysis, which predicts the likelihood of a smallholder adopting intercropping based on these factors, is presented and discussed. The most likely combination of circumstances (82% probability) under which rubber–tea intercropping is practiced is shown to be where the farmer’s income is greater than Rs. 10,000 per month, where the farmer’s income is based solely on own farm enterprises, and where more than 80% of the farmer’s land area was judged to be suitable for tea cultivation. Conversely, 30% of smallholder farmers that chose not to intercrop did possess land suitable for tea cultivation. Qualitative responses to the RRA indicated that limitation of technical knowledge was the main problem subsequently faced by rubber farmers who had adopted rubber–tea intercropping. Results indicate that there is need for both income support through farm subsidies and further agricultural extension services, if rubber–tea intercropping is to be adopted more widely in Sri Lanka. The wider usefulness of the developed logistic model in determining the likelihood of adoption of intercropping by smallholder farmers is discussed.  相似文献   
4.
This study was conducted to evaluate the simultaneous use of plant growth promoting rhizobacterium (QS1) and different combinations of urea-nitrogen and biogas slurry-nitrogen for improving growth, yield, and nutritional quality of field grown okra. The isolate QS1 was identified as Bacillus sp. QS1 based on its ribosomal ribonucleic acid (rRNA) sequence analysis. Results revealed that among the combinations, the application of 50% urea-nitrogen + 50% biogas slurry-nitrogen was optimal for improving crop performance. This combination significantly (p ≤ 0.05) promoted okra growth viz. plant height (69.63–80.03 cm), no of branches per plant (14–18), shoot fresh weight (86.66–136.25 g/plant), root fresh weight (22.5–26.58 g/plant), and fruit yield (8.5–13.5 kg/plot) compared to the plants receiving 100% urea-nitrogen. The interactive effective of this nitrogen combination and QS1 inoculation produced the highest growth and yield response. Similarly, the same treatment improved nitrogen, phosphorus, potassium, and protein contents in shoot and fruit of okra compared to other treatments.  相似文献   
5.
Zinc (Zn) is an important micronutrient for rice (Oryza sativa L.) production and its deficiency has been observed in various production systems. High grain Zn concentration is equally important for high rice yield and human health. In this work, the effects of Zn fertilization on seedling growth, grain yield, grain Zn concentration, and their association with root traits were studied under alternate wetting and drying (AWD), aerobic rice (AR), system of rice intensification (SRI), and continuous flooding (CF). Zinc fertilization (15 kg ha?1) improved nursery seedlings chlorophyll and Zn concentrations, root length, and number of roots with highest values observed in CF. At harvesting, maximum plant height, panicle length, total and panicle bearing tillers, and kernel yield were found with Zn addition in AWD and CF rice systems. Mid season drainage provided at maximum tillering and Zn fertilization increased its concentration in leaves, culms, panicles, and grains under CF and AR at physiological maturity. Most of Zn applied was allocated into culms and panicles, nevertheless, a significant increase in grain Zn concentration was also observed in all production systems. Association of leaf Zn with grain Zn concentration was stronger than with culm and panicle Zn. The results indicate that Zn application after rice nursery transplanting is more important for grain Zn enrichment in all rice systems than for increase in grain yield in all systems except AWD where grain yield was also increased. More grain yield in CF and AWD as compared to SRI and AR can also be attributed to decreased spikelet sterility and to better Zn phyto‐availability in these rice systems at physiological maturity.  相似文献   
6.
The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.  相似文献   
7.
Stripe rust is a continuous threat to wheat crop all over the world. It causes considerable yield losses in wheat crop every year. Continuous deployment of adult plant resistance(APR) genes in newly developing wheat cultivars is the most judicious strategy to combat this disease. Herein, we dissected the genetics underpinning stripe rust resistance in Pakistani wheat germplasm. An association panel of 94 spring wheat genotypes was phenotyped for two years to score the infestation of stripe rust on each accession and was scanned with 203 polymorphic SSRs. Based on D' measure, linkage disequilibrium(LD) exhibited between loci distant up to 45 c M. Marker-trait associations(MTAs) were determined using mixed linear model(MLM). Total 31 quantitative trait loci(QTLs) were observed on all 21 wheat chromosomes. Twelve QTLs were newly discovered as well as 19 QTLs and 35 previously reported Yr genes were validated in Pakistani wheat germplasm. The major QTLs were QYr.uaf.2 AL and QYr.uaf.3 BS(PVE, 11.9%). Dissection of genes from the newly observed QTLs can provide new APR genes to improve genetic resources for APR resistance in wheat crop.  相似文献   
8.
Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)–microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.  相似文献   
9.
ABSTRACT

Cotton is critical for phosphorus demands and very sensitive for its deficiency. However, identifying the effect of low-phosphorus tolerance on cotton growth, yield, and fiber quality by reducing phosphorus consumption. This may help to develop phosphorus-tolerant high-yielding cotton cultivars. In a two-year repeated (2015 and 2016) hydroponic experiment (using 0.01 and 1 mM KH2PO4), two cotton cultivars with phosphorus sensitivity (Lu 54; a low-phosphorus sensitive and Yuzaomian 9110; a low-phosphorus tolerant) were screened on the base of agronomic traits and physiological indices through correlation analysis, cluster analysis and principal component analysis from 16 cotton cultivars. Low phosphorus nutrition reduced the plant height, leaf number, leaf area, phosphorus accumulation and biomass in various organs of seedlings. The deficiency negatively affected the morphogenesis of seedlings, as well as yield and fiber quality. Further, these screened cultivars were tested in a pot experiment with 0, 50, 100, 150, 200 kg P2O5 ha?1 during 2016 and 2017. It was found to have a significant (P< 0.05) difference in boll number, lint yield, fiber strength, and micronaire at the harvest. Furthermore, after collectively analyzed the characteristics of Lu 54 and Yuzaomian 9110, there were six key indices that could improve the low phosphorus tolerance of cotton cultivars. These were root phosphorus accumulation, stem phosphorus accumulation percentage, leaf and total biomass of seedlings, seed cotton weight per boll and fiber length.  相似文献   
10.
Dried sclerotia of Sclerotium delphinii rotted in moist soil whereas those of Sclerotium cepivorum. Botrytis cinerea and Botrytis tulipae did not. A number of fungi invaded dried sclerotia of S. delphinii in soil, the principal coloniser found in the first sampling being Trichodermu hamatum. Leakage of 14C compounds from dried labelled sclerotia placed in water was rapid and was little affected by variation in leakage temperature from 1 to 25°C or by prolonging the drying period beyond a day. Leakage from dried sclerotia which were allowed to imbibe water through a small part of their surface was much reduced. Sclerotia which were redried after leakage leaked again when returned to water but with all four fungi the first of three leakage cycles gave the highest 14C levels. Loss in dry weight in the first leakage cycle was greater with S. delphinii than with the other three fungi and this may be related to the poor survival of dried sclerotia of S. delphinii in moist soil. Substances lost during leakage appear to originate from within sclerotial hyphae rather than from the hyphal free space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号