首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
农学   3篇
  9篇
综合类   6篇
农作物   8篇
水产渔业   15篇
畜牧兽医   10篇
园艺   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.
The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis.  相似文献   
2.
The effects of relative humidity (RH) and high ambient temperature (T) on physiological responses and animal performance were studied using 12 groups (10 gilts per group) in pens inside respiration chambers. The microclimate in the chamber was programmed so that T remained constant within a day. Each day, the T was increased by 2 degrees C from low (16 degrees C) to high (32 degrees C). Relative humidity was kept constant at 50, 65, or 80%. The pigs' average initial BW was 61.7 kg (58.0 to 65.5 kg), and their average ending BW was 70.2 kg (65.9 to 74.7 kg). Respiration rate (RR), evaporative water (EW), rectal temperature (RT), skin temperature (ST), voluntary feed intake (VFI), water-to-feed ratio (rW:F), heat production (HP), and ADG were analyzed. The animals had free access to feed and water. We determined the T above which certain animal variables started to change: the so-called inflection point temperature (IPt) or "upper critical temperature." The first indicator of reaction, RR, was in the range from 21.3 to 23.4 degrees C. Rectal temperature was a delayed indicator of heat stress tolerance, with IPt values ranging from 24.6 to 27.1 degrees C. For both these indicators the IPt was least at 80% RH (P < 0.05). Heat production and VFI were decreased above IPt of 22.9 and 25.5 degrees C, respectively (P < 0.001). For each degree Celsius above IPt, the VFI was decreased by 81, 99, and 106 g/(pig.d) in treatments 50, 65, and 80% RH, respectively. The ADG was greatest at 50% RH (P < 0.05). Ambient temperature strongly affects the pigs' physiological changes and performance, whereas RH has a relatively minor effect on heat stress in growing pigs; however, the combination of high T and high RH lowered the ADG in pigs. The upper critical temperature can be considered to be the IPt above which VFI decreased and RT then increased. Temperatures of the magnitude of both these IPt are regularly measured in commercial pig houses. We conclude that the upper critical temperatures for 60-kg, group-housed pigs fed ad libitum are between 21.3 and 22.4 degrees C for RR, between 22.9 and 25.5 degrees C for HP and VFI, and between 24.6 and 27.1 degrees C for RT. It is clear that different physiological and productive measurements of group-housed, growing-finishing pigs have different critical temperatures.  相似文献   
3.
ABSTRACT

Livestock production plays a leading role in agricultural land-use change. Producing biogas from livestock waste and subsequently using the biogas effluent as fertilizer for crops is a promising option to solve environmental problems resulting from expanding livestock production. However, it is difficult to promptly and accurately measure the nitrogen (N) concentration of effluent for farmers in developing countries, making precise N management difficult. The objectives of the current study were (1) to evaluate the feasibility of variable-timing, fixed-rate application of cattle biogas effluent using a leaf color chart (LCC) for rice (Oryza sativa L.) and (2) to determine the optimum LCC threshold for grain yield. We conducted two microcosm experiments in the Mekong Delta of Vietnam in 2018 using eight treatments of N-fertilizer application. In the Zero treatment, we applied no N. In the Estd treatment, we split-applied N as effluent (E) at fixed rate and timing as the standard method. In E2.75, E3.00, E3.25, E3.50, and E3.75, we applied effluent whenever the LCC value went below 2.75, 3.00, 3.25, 3.50, and 3.75, respectively. In U3.25, we applied N as urea (U) whenever the LCC value fell below 3.25. The total effluent-N application rate ranged from 90 to 210 kg N ha?1 season?1. Rice growth was normal but there was a substantial yield gap between the two microcosm experiments due to the seasonal difference in solar radiation. Rice yield tended to increase with increasing LCC threshold. There was a positive linear relationship between LCC and chlorophyll content (SPAD) values (R 2 = 0.73–0.79). Grain yield was well explained (R 2 = 0.70–0.89) by the seasonal mean LCC or SPAD value. Plant total N uptake increased with increasing LCC threshold, but the three calculated indices of N use efficiency (NUE) – apparent N recovery, agronomic NUE, and internal NUE – were not always improved with a higher LCC threshold. Our results showed that the tested variable-timing, fixed-rate strategy for the application of cattle biogas effluent was feasible and the optimum LCC threshold for grain production was 3.75 under the current microcosm conditions.  相似文献   
4.
There is growing interest in sustainable intensification of aquaculture production. Yet little economic analysis has been done on farm‐level effects of the economic sustainability of production intensification. Data from 83 shrimp farms (43 in Vietnam and 40 in Thailand) were used to identify (through principal component and cluster analyses) 13 clusters of management practices that reflected various scales of production intensity that ranged from 0–1999 kg/ha/crop to 10,000 kg/ha/crop and above, for both Penaeus monodon and Litopenaeus vannamei in Vietnam and Thailand. The clusters identified reflected sets of management practices that resulted in differing yields despite similarities in stocking densities among some clusters. The enterprise budget analysis developed showed that the more intensively managed clusters outperformed the less intensively managed clusters in economic terms. More intensively managed farm clusters had lower costs per metric ton of shrimp produced and were more profitable. The greater yields of shrimp produced per hectare of land and water resources in more intensively managed shrimp farms spread annual fixed costs across a greater volume of shrimp produced and reduced the cost per metric ton of shrimp. Costs per metric ton of shrimp produced decreased from the lowest to the highest intensity level (from US$10,245 at lowest intensity to US$3484 at highest for P. monodon and from US$24,301 to US$5387 for L. vannamei in Vietnam and from US$8184 at the lowest intensity level to US$3817 at the highest intensity level per metric ton for L. vannamei in Thailand). Costs of pond amendments used in shrimp production were particularly high in Vietnam and largely unwarranted, whereas fixed costs associated with the value of land, production facilities, equipment, and labor were sufficiently high in Thailand so that net returns were negative in the long run. Nevertheless, economic losses in Thailand were less at greater levels of intensification. The study demonstrated a clear value proposition for shrimp farmers to use natural resources (such as land) and other inputs in an efficient manner and supports findings from corresponding research on farm‐level natural resource use efficiency. Additional research that incorporates economic analysis into on‐farm studies of sustainable intensification of aquaculture is needed to provide ongoing guidance related to sustainable management practices for aquaculture.  相似文献   
5.
6.
The aims of this study were to unravel the intestinal microbiota of Litopenaeus vannamei after being fed a diet without (control) or with the synbiotic (SYN) for 60 days using next‐generation sequencing technology to see if changes in the intestinal microbiota were involved in the improved growth performance and health status of the shrimp. Next‐generation sequencing data showed that six phyla, 11 classes, 19 orders, 30 families, 58 genera and 73 species with taxonomic names assigned were detected. The majority of the operational taxonomic units (OTUs) was shared between the SYN and control shrimp and comprised 37 OTUs. However, intestinal biodiversity analyses revealed that SYN‐fed shrimp had a higher species richness, evenness and Shannon–Weaver index than did shrimp fed the control diet, but without reaching statistical significance. Interestingly, shrimp fed the SYN diet exhibited improved colonization of Lactobacillus plantarum and reduced prevalences of Vibrio harveyi and Photobacterium damselae in the intestines. These findings indicate that the SYN was able to modulate the intestinal bacterial community of shrimp and could be used to control vibriosis in shrimp.  相似文献   
7.
The 32R rice genotype is resistant to sheath blight disease (ShB), with a high-yield potential. We examined effects of temperature on the plant responses of 32R in comparison with those of the ShB-susceptible rice genotype (29S) and Nipponbare (Nb, a Japonica standard cultivar). The seedlings at the 4th leaf stage of rice genotypes were exposed to 14/14, 19/14, 25/20, 31/26, 37/32 and 37/37 °C (day/night) for 5, 10 and 15 days. The dry weight, leaf area, photosynthesis, contents of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and chlorophyll contents were examined. The dry weight showed lower in 32R than in 29S and Nb at a low temperature, and total dry weight correlated strongly with root dry weight and leaf area. The relative growth rate (RGR) correlated strongly with the net assimilation rate (NAR). Rubisco, chlorophyll contents and the photosynthetic rates were limited at a low temperature and showed lower in 32R than in 29S and Nb. The strong correlations between Rubisco and the rates of maximum photosynthesis and initial slope were found in 32R, but not found in 29S and Nb. In addition, RGR and NAR of 32R correlated positively with Rubisco. These suggest that 32R contains traits of cold-sensitive genotypes that are related to limiting Rubisco at a low temperature, thus diminishing photosynthesis and limiting plant growth. Differences of growth among 32R, 29S and Nb were discussed in the relation of genotypes.  相似文献   
8.
Sponges are prolific sources of various natural products that have provided the chemical scaffolds for new drugs. The sponges of the genus Petrosia inhabit various regions and contain a variety of biologically active natural products such as polyacetylenes, sterols, meroterpenoids, and alkaloids. This review aims to provide a comprehensive summary of the chemical structures and biological activities of Petrosia metabolites covering a period of more than four decades (between 1978 and 2020). It is also described in this review that the major groups of metabolites from members of the genus Petrosia differed with latitude. The polyacetylenes were identified to be the most predominant metabolites in Petrosia sponges in temperate regions, while tropical Petrosia species were sources of a greater variety of metabolites, such as meroterpenoids, sterols, polyacetylenes, and alkaloids.  相似文献   
9.
Phytate (inositol-hexa-phosphate) has an important role in plants but it also may have anti-nutritional properties in animals and humans. While there is debate within the plant breeding and nutrition communities regarding an optimum level in grain, there appears to be little information at the molecular level for the genetics of this trait, and its association with important trace elements, in particular, Fe and Zn. In this preliminary study, quantitative trait loci (QTL) for grain phytates, Zn and Fe in glasshouse-grown rice lines from an IR64 × Azucena doubled haploid population were identified. Correlations between phytate and essential nutrients were also studied. Transgressive segregation was found for most traits. Phytate and total P concentrations had one QTL in common located on chromosome five with the (high concentration) allele contributed from Azucena. There were significant positive correlations between phytate and inorganic phosphorus (P), total P, Fe, Zn, Cu and Mn concentrations for both grain concentration and content. However, the QTLs of phytate were not located on the same chromosomal regions as those found for Fe, Zn and Mn, suggesting that they were genetically different and thus using molecular markers in breeding and selection would modify the phytate level without affecting grain micronutrient density.  相似文献   
10.
Resource use was investigated at 34 Litopenaeus vannamei and five Penaeus monodon farms in Thailand and 30 L. vannamei and 24 P. monodon farms in Vietnam. Farms varied in water surface areas for production, reservoirs, canals, and settling basins; in pond size and depth; and in water management, stocking density, feeding rate, amendment input, aeration rate, crop duration, and crops per year. Production of L. vannamei averaged 17.3 and 10.9 m.t./ha/yr, and feed conversion ratio averaged 1.49 and 1.33 in Thailand and Vietnam, respectively. On average, production of 1 m.t. of L. vannamei required 0.58 ha land, 5,400 m3 water, 60 GJ energy, and 1218 kg wildfish in Thailand and 1.76 ha land, 15,100 m3 water, 33.7 GJ energy, and 1264 kg wildfish in Vietnam. Resource use per metric ton of shrimp declined with greater production intensity. In Thailand, P. monodon was produced at 0.2–0.4 m.t./ha/yr, with no inputs but water and postlarvae. In Vietnam, P. monodon production averaged 3.60 m.t./ha/yr. Production of 1 m.t. of P. monodon required 0.80 ha land, 36,000 m3 water, 47.8 GJ energy, and 1180 kg wildfish, and resource use per ton production declined with increasing production intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号