首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
畜牧兽医   1篇
  2022年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

Three vigor zones, identified in a Barbera vineyard by remote sensing at full canopy, were carefully ground-truthed to determine, over 2 years, the relative weight of soil factors in affecting within-field variability, and to investigate vigor zone influence on dry matter (DM) and nutrient partitioning into different vine organs. Regardless of season, high vigor (HV) achieved stronger vine capacity as total vegetative growth and yield while resulting in markedly less ripened fruits than low vigor (LV) vines. PCA analysis carried out on ten different soil and vine variables clearly separated the three vigor levels and the correlation matrix highlighted that the factors mostly contributing to HV were soil depth, soil K and P concentration, total available water, clay fraction and Nleaf concentration. Conversely, sand fraction was the main marker for LV. When annual DM retrieved in clusters, canes, leaves, and shoot clippings was calculated for each vigor level and expressed as content (i.e. kg/ha) there was a general decreasing trend moving from HV to LV. However, when DM partitioned to each organ was given on a relative basis (i.e. percentage over total) results were similar across vigor levels. Similarly, when nutrients were given as content (e.g. kg or g/ha) out of 120 within-vigor combinations (12 nutrients, 2 seasons, 5 organs), 65 showed a significant difference between HV and LV. Conversely, with data expressed on a concentration basis (i.e. % DM) the number of significant differences between the vigor level means fell to 15. The study strengthens the causal link between soil properties and intra-vineyard spatial variability and clarifies that patterns of dry matter and nutrient partitioning to different vine organs are mildly affected by vine vigor when referred on a relative basis.

  相似文献   
2.
Nutrient losses from manure management in the European Union   总被引:4,自引:0,他引:4  
Manure management systems are conducive to nutrient and carbon losses, but the magnitude of the loss highly depends on the nutrient element, the manure management system and the environmental conditions. This paper discusses manure management systems in the 27 Member States of the European Union (EU-27) and nutrient losses from these systems, with emphasis on nitrogen (N). In general, losses decrease in the order: C, N >> S > K, Na, Cl, B > P, Ca, Mg, metals. Assessments made with the integrated modeling tool MITERRA-EUROPE indicate that the total N excretion in 2000 by livestock in EU-27 was  10,400 kton. About 65% of the total N excretion was collected in barns and stored for some time prior to application to agricultural land. Almost 30% of the N excreted in barns was lost during storage; approximately 19% via NH3 emissions, 7% via emissions of NO, N2O and N2, and 4% via leaching and run-off. Differences between Member States in mean N losses from manure storages were large (range 19.5–35%). Another 19% of the N excreted in animal housing systems was lost via NH3 emissions following the application of the manure to land. The results indicate that maximally 52% of the N excreted in barns was effectively recycled as plant nutrient. Various emission abatement measures can be implemented and have been implemented already in some Member States to reduce the emissions of NH3 and N2O, and the leaching of N and P. There is scope to reduce NH3 emissions by  30% relative to the reference year 2000, although the uncertainty in estimated emissions and in the estimated effects of emission abatement measures is relatively large.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号