首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础科学   1篇
综合类   3篇
  2020年   2篇
  2018年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The validity of the assumption that an irrigation event from point sources can be approximated as an infinite line source is investigated in this article. This is accomplished by comparing soil water dynamics under line and point sources. Two existing mathematical models which simulate point and line drip irrigation were used. The models consider root water uptake, evaporation of soil water from the soil surface and incorporate hysteresis in the soil water characteristic curve. The comparison was made for two soil types (loamy sand and silt).The results showed that the treatment of a point source as a line source underestimates the water content values for both the soil types. This difference decreases when the depth of comparison increases. For soil depths greater than 30 cm and for time greater than irrigation duration the two models gave very close results. For the same emitter spacing and for the horizontal direction perpendicular to the drip line on the emitter spot, when the distance from the point and the line sources increases the difference of water content values increases. On the contrary, in the direction parallel to the drip line when the distance from the emitter increases (the distance from the line source remains the same) the difference of water content decreases. Lastly, differences are greater in the case of coarse grained soil than in fine grained soil.  相似文献   
2.
Stamatiadis  S.  Schepers  J. S.  Evangelou  E.  Glampedakis  A.  Glampedakis  M.  Dercas  N.  Tsadilas  C.  Tserlikakis  N.  Tsadila  E. 《Precision Agriculture》2020,21(3):695-712
Precision Agriculture - Spatial crop nitrogen (N) management has advanced over the years by using canopy reflectance data to make N recommendations. But the value of an automated system for...  相似文献   
3.
Evangelou  E.  Stamatiadis  S.  Schepers  J. S.  Glampedakis  A.  Glampedakis  M.  Dercas  N.  Tsadilas  C.  Nikoli  T. 《Precision Agriculture》2020,21(5):1008-1026
Precision Agriculture - Improved genetics and better management have increased maize productivity, but often at the expense of excess water and N fertilizer. Environmental concerns have prompted...  相似文献   
4.
Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号