首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
林业   8篇
农学   9篇
  26篇
综合类   14篇
农作物   5篇
水产渔业   4篇
畜牧兽医   15篇
园艺   3篇
植物保护   6篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
The cryopreservation of testicular tissue is a potential method for preserving male fertility. However, the effect of cryopreservation on bovine calf testicular tissue is scarce. This study investigated the effect of different cryoprotectants on bovine calf testicular tissue at the molecular level. Testicular tissue from ten immature bovine calves (6 months) was collected after slaughter and cryopreserved in an extender containing different concentrations of the following five cryopreservation solutions (CP): bovine serum albumin (BSA) with 5% dimethyl sulfoxide (DMSO), trehalose with 5% DMSO, DMSO and glycerol and ethylene glycol (EG). After 7‐day cryopreservation, the expression levels of three spermatogonial stem cell (SSC)‐related genes, octamer‐4 (OCT4), KIT ligand (MGF/SCF) and kit oncogene (C‐KIT), were investigated by quantitative PCR (qPCR). The cell viability was highest for the tissues preserved with 30 mg/ml BSA (77.82% ± 1.22) and 40 mg/ml trehalose (74.23% ± 1.16) compared with other groups (p < 0.05), and the level of expression of the three genes was highest with 30 mg/ml BSA (p < 0.05). Compared with other CPs, the 30 mg/ml BSA and 40 mg/ml trehalose have the better cryopreserve protection. The 30 mg/ml BSA is the most viable media for the cryopreservation of testicular tissue from cattle.  相似文献   
2.
通过室内培养试验研究生物炭及生物硝化抑制剂添加对黄土区设施菜地土壤N2O和CO2排放的影响,并与化学合成硝化抑制剂作对比。试验设置6个处理:不施肥(CK)、施氮(N)、施氮+生物炭(N+BC)、施  相似文献   
3.
An indoor aquaponic system (i.e., the integration of fish culture with hydroponic plant production in a recirculating setup) was operated for maximizing water reuse and year-round intensive food production (Nile tilapia, Oreochromis niloticus , and leaf lettuce) at different fish feed to plants ratios. The system consisted of a fish culture component, solid removal component, and hydroponic component comprising six long channels with floating styrofoam rafts for holding plants. Fish culture effluents flowed by gravity from the fish culture component to the solid removal component and then to the hydroponic component. Effluents were collected in a sump from which a 1-horsepower in-line pump recirculated the water back to the fish culture tanks at a rate of about 250 L/min. The hydroponic component performed as biofilter and effectively managed the water quality. Fish production was staggered to harvest one of the four fish tanks at regular intervals when fish attained a minimum weight of 250 g. Out of the total eight harvests in 13 mo, net fish production per harvest averaged 33.5 kg/m3 of water with an overall water consumption of 320 L/kg of fish produced along with the production of leaf lettuce at 42 heads/m2 of hydroponic surface area. Only 1.4% of the total system water was added daily to compensate the evaporation and transpiration losses. A ratio of 56 g fish feed/m2 of hydroponic surface effectively controlled nutrient buildup in the effluents. However, plant density could be decreased from 42 to 25–30 plants/m2 to produce a better quality lettuce.  相似文献   
4.
The present study was conducted to identify natural products in the bioactive fractions of Lagenaria siceraria mesocarp. Column chromatography and gas chromatography-mass spectrometry (GC-MS) was used for separation and identification of phytochemicals. Methanolic extract and its fractions displayed alpha-amylase and xanthine oxidase inhibitory activities comparable to standard drugs. GC-MS analysis of the fractions and column eluates revealed the presence of a variety of chemical compounds, including 4-(methoxymethyl)phenol, 2,2?-methylenebis{6(1,1-dimethylethyl)-4-ethyl}phenol, methyl 2-hydroxy-3-phenylpropanoate, oxacyclododecane-2,8-dione, N-(2-(4-hydroxyphenyl)ethyl] acetamide, 2,3-Epoxycarane, 4-(propan-2-yl)benzaldehyde, octadec-1-ene, 4a-methyl-1-methylidene-1,2,3,4,4a,9,10,10a-octahydrophenanthrene, 2,6-di(propan-2-yl)naphthalene, methyl 3-(4-hydroxy-3,5-dimethylphenyl)propanoate, 4,8a-dimethyl-6-(prop-1-en-2-yl)-3,5,6,7,8,8a-hexahydronaphthalen-2(1H)-one 1,3-dihydro-2-benzofuran, methyl N-hydroxybenzenecarboximidoate, linoleic acid, and palmitic acid. Many of these compounds are being reported for the first time from this plant, the presence of which may explain, at least partly, its medicinal efficacy. The fruit possesses significant anti-enzymatic properties against alpha-amylase and xanthine oxidase, and the most active compounds of mesocarp of the fruit appear in ethyl acetate fraction of its methanolic extract.  相似文献   
5.
Boron is an essential plant micronutrient and the range between deficient and toxic levels of boron is narrow for most of the plants. Like other elements, boron becomes toxic to growth at high concentrations. High boron concentrations in soil reduce crop productivity in many areas of the world. The effect of increasing levels of boron (0, 0.50, 1.00, 1.50, 2.00 mm ) on oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua were investigated in the present study. Boron toxicity reduced the growth parameters viz. stem height, fresh weight and dry weight. Treatments induced oxidative stress resulting in lower net photosynthetic rate, stomatal conductance, internal CO2 and total chlorophyll content. The increased activities of antioxidant enzymes like CAT, POX and SOD were also noted in response to increasing levels of boron stress. However, H2O2 and artemisinin content were found to be high up to 1.00 mm concentration of boron compared to control, and on applying higher doses, further reduced contents were obtained. Thus, the results suggest that a mild stress of boron can be utilized for enhanced artemisinin production.  相似文献   
6.
Drought is ubiquitous in rainfed cropping systems and often limits maize yields. The sensitivity of transpiration response early in progressive soil drying is a trait with potential to improve crop drought resistance. Simulation studies demonstrated that increased sensitivity to drying soil leading to restricted transpiration rates results in conservation of soil water during vegetative stages for possible use during grain filling. In contrast to other crops, there have been no studies characterizing genotypic variability for this trait in maize. Experiments in controlled environments were conducted to characterize the fraction of transpirable soil water (FTSW) threshold on drying soil for 36 hybrids selected for variation in the field for drought resistance, regions of adaptation and stay green. While FTSW thresholds varied among hybrids from 0.60 to 0.33, these thresholds were not uniformly associated with level of drought resistance in the field. Nevertheless, this study demonstrated a high FTSW threshold corresponded with drought resistance observed in some modern maize germplasm (hybrids #7, 17, 24, 27 and 32). This knowledge can enable breeding work seeking to exploit this adaptive trait to improved drought tolerance in low threshold FTSW germplasm.  相似文献   
7.
Zizyphus oxyphylla Edgew is used in Pakistan as a folk medicinal remedy for inflammatory conditions, pains especially rheumatic pain, fevers, allergy and diabetes. The aim of the current study was to scientifically validate the folk use of Z. oxyphylla Edgew by using the isolated compound in vitro and in vivo levels. Kushecarpin A was isolated from ethyl acetate fraction of the plant crude extract. Molecular docking simulations predicted Kushecarpin A as a potential new lipoxygenase (LOX) inhibitor. Kushecarpin A showed significant lipoxygenase inhibition (IC50: 7.2 ± 0.02 μM) thus validated computational prediction. It also exhibited significant and highly significant inhibition (p < 0.05 and p < 0.01) of carrageenan-induced hind paw oedema at the doses of 5, 10 and 20 mg/kg. Kushecarpin A seems to be a potentially new anti-inflammatory compound responsible for anti-inflammatory activities of Z. oxyphylla Edgew. In vitro and in vivo anti-inflammatory inflammatory activities were found in good agreement with the folk medicinal use of Z. oxyphylla Edgew in inflammatory disorders.  相似文献   
8.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   
9.
Recently, brassinosteroids (BRs) have emerged as a new group of growth promoting phytohormones. 28-homobrassinolide (HBR) is one of the several brassinosteroids, the role of which in enhancing growth, productivity and quality of plants, via improving various physiological processes, has been established both under stress and normal conditions. Out of a large number of essential oil bearing plants, mint (Mentha arvensis L.) constitutes the most important source of therapeutic agents used in the alternative systems of medicine. The mint plant has marvelous medicinal and aromatic values. In view of enhancing yield and quality of this medicinally important plant, a pot experiment was conducted under natural conditions of net house. The study was aimed at exploring the effect of four concentrations of HBR (10?0, 10?8, 10?7 and 10?6 M) on the performance of mint with regard to physiological attributes, herbage yield, content and yield of essential oil, and active constituents at 100 and 120 days after planting. The foliar application of HBR enhanced physiological attributes, herbage yield and the yield and content of most of the active constituents (menthol, L-methone, isomenthone and menthyl acetate) of mint at both the stages, with 10?7 M concentration proving the best. However, the next higher concentration of HBR (10?6 M) exhibited no further increase in the values of the attributes studied. Rather, 10?6 M was slightly inferior to 10?7 M concentration; but it always proved significantly better than the control.  相似文献   
10.
In the present study, embryogenic calli of sugarcane variety BL4 were induced using 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin in different concentrations and combinations. In contrast to earlier studies, embryogenic callus sectors were identified and isolated microscopically within 1–2 weeks. Subsequently, 51 media formulations were used for regeneration of proliferated embryogenic callus, using MS medium supplemented with three different cytokinins [kinetin, 6-Benzylamino purine (BAP), and thidiazuron (TDZ)] and auxins (IAA/NAA and IBA) in different combination and concentrations. After acclimatization, the genomic DNA of regenerated plants was studied to explore the insertion polymorphism of transposable elements in order to ascertain the variation among somaclones. Though low concentration of kinetin with 2,4-D was found supportive to embryogenic callus development, the highest number of regenerated plantlets was observed using BAP (1 μM), however the plantlets had very low fresh weight (2.2 g). Conversely, TDZ alone supported a significant increase in the number of plantlets regenerated (38–40) with higher fresh weight. The somaclones generated during this study showed considerable positional polymorphism of activator-like transposable elements possibly due to the stress associated with in vitro culture. This study provides a procedure to produce regenerated sugarcane plants from embryogenic callus in a relatively short time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号