首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2012年   1篇
  2008年   2篇
  2006年   2篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Eurasian Soil Science - Humic substances (HS) are heterogeneous and polydisperse compounds formed in soils, sediments and waters during the decay and transformation of organic residues (the process...  相似文献   
2.
Soil formation on hard rocks—nepheline syenite, amphibolite, metamorphized gabbro diabase, and their derivatives—was studied in the mountainous tundra and in the northern and middle taiga zones of the Kola Peninsula and Karelia (in the Kivach Reserve). It was found that the soils developing from these rocks could be classified into three groups: (1) petrozems with the O-M profile (the most common variant), (2) podzols and podzolized podburs on the substrates with an admixture of morainic derivatives of acid rocks, and (3) shallow (<5–10 cm) pebbly soils on the substrates without an admixture of allochthonous material (the rarest variant). In soils of the third group, the pedogenic alteration of the mineral matrix does not result in the appearance of phyllosilicates in the fine fractions if these phyllosilicates are initially absent in the rock. In these soils, the protion of the organic matter, and binding of iron released from the weathered silicate minerals into iron-organic complexes) are virtually undifferentiated by the separate soil horizons because of the very low thickness of the soil profiles. These soils have the Oao-BHFao-M profile; it is suggested that they can be classified as leptic podburs. An admixture of morainic material containing phyllosilicate minerals favors a more pronounced differentiation of the modern pedogenic processes by separate soil horizons even in the case of shallow soil profiles; the intense transformation of phyllosilicates takes place in the soils.  相似文献   
3.
Humic acids (HAs) represent heterogeneous and polydisperse mixture of molecules that differ in their chemical structure, composition, and functional properties. Fractionation of HAs is of key importance for understanding their interactions with various organic and inorganic compounds, for studying their physiological activity, and for predicting their behavior in natural environments and agroecosystems. Existing fractionation methods are rather laborious and time consuming, which limits their application in fundamental science and industry. It is shown that fractionation of humic acids with ammonium sulfate ensures their preparative separation with respect to (a) hydrophobicity, (b) molecular size, and (c) charge dependent on the amount of functional groups. Salting out at the lowest and highest degrees of saturation with ammonium sulfate, upon which precipitation of the molecules occurs, makes it possible to separate humic acids into functionally different high-molecular-weight/hydrophobic and low-molecular-weight/hydrophilic fractions. The first fraction is characterized by a lower electrophoretic mobility than the second fraction. The weight percentage of the components coagulated at the lowest degree of salt saturation can be used as a quantitative parameter for comparing hydrophobic properties of humic acids. Salting out is recommended as a fast, simple, and cheap alternative to chromatographic methods for preparative separation of humic acids if large amounts of functionally different fractions need to be obtained.  相似文献   
4.
5.
Lichens form the dominant plant cover in extreme environments and participate in mineral weathering, fine-earth stabilization and primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes has never been investigated. Recently, laccases and tyrosinases have been discovered in representatives of the order Peltigerales (Laufer et al., 2006a, b; Zavarzina and Zavarzin, 2006). Laccases from most species had unusually large molecular weights (Laufer et al., 2009). Together with oligomeric laccases, we have found monomeric enzymes in Solorina crocea and Peltigera aphthosa (Lisov et al., 2007). In the present work we have purified homodimeric (large) and monomeric (small) laccases of the soil-stabilizing lichen S. crocea, determined their physico-chemical and catalytic properties and studied their reactions with soil humic acids. Our results suggest that oligomeric nature of lichen laccases can be artifactual, because homodimeric laccase was transformed into the monomeric form following hydrophobic interaction chromatography. We hypothesize that large laccase consists of two monomeric enzymes, each of which is bound with additional hydrophobic component(s). Small laccase is similar in its properties to the laccases of basidiomycetes. It is more resistant to elevated temperature and storage than the large form, showed a higher oxidation potential, had different pH-optima in oxidizing substrates and was less inhibited by humic acids. Despite these differences, both laccases depolymerized and decolorized humic acids from soils at comparable rates, with small laccase being slightly more effective. This finding suggests that lichens have a potential to participate in transformation of soil organic matter.  相似文献   
6.
Litter samples from peat podzolic (Stagnic Podzoluvisol) and soddy gley (Mollic Gleysol) soils differing in their chemical and physicochemical properties, geochemical conditions, and the character of soil microbial complexes were analyzed. The sampling was performed three times during the growing season: in May, August, and October. The contents of ammonium ions, soluble phenolic compounds, and flavans were determined in all the samples. The litters of the two soils differed in the contents of both ammonium ions and phenolic compounds. Distinct seasonal dynamics of ammonium and phenolic compounds were registered in the litter of the peat podzolic soil. The high negative correlation between the contents of ammonium ions and phenolic compounds was found for the samples collected in May.  相似文献   
7.
The hypothesis was proposed that highly polymeric humic substances in the mineral horizons of soils in a temperate humid climate originate from polymerization of water-soluble structural precursors directly on mineral surfaces under the catalytic effect of immobilized phenoloxidases (heterophasic biocatalysis). This hypothesis was confirmed by a laboratory experiment using a mixture of monomeric phenols and nitrogenous compounds as structural precursors, fungal laccase as a biotic catalyst, and a hydroxyaluminum-kaolinite complex as a mineral support. Enzymic oxidation of phenolic precursors on the mineral surface was substantially more rapid than abiotic oxidation and led to synthesis of a highly polymeric fraction with a molecular weight over 75 kDa. These products were not produced on the mineral with an absence of laccase (abiotic catalysis) or in solution without the mineral matrix (homogeneous catalysis).  相似文献   
8.
We describe here the role of the polyphenoloxidases in the oxidation of recalcitrant soil organic compounds and consider what changes occur in their structure during experiments on the biotransformation of soil and peat-derived humic acids (HA). These transformations were carried out by laccase (EC 1.10.3.2.) of the white-rot basidiomycete Panus tigrinus 8/18. It was shown that purified laccase alone is capable both of polymerizing and depolymerizing HA in vitro. The direction of transformations depends on the nature and properties of HA. Those fractions of HA are affected by laccase, which cause the lowest inhibitory effect on the enzyme. Contrary to previous studies depolymerization of HA was not necessarily accompanied by decolorization: chernozem-derived HA showed increase in absorbance of its aqueous solution in the region of 240-500 nm during depolymerization, while peat-derived HA showed decrease in absorbance throughout the entire spectrum during polymerization. All studied HA were competitive inhibitors of laccase towards oxidation of synthetic substrate 2,2′-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS). When studying the nature of the inhibitory effect, it was shown that more ‘hydrophobic’ HA as well as more ‘hydrophobic’ HA fragments were stronger inhibitors of blue laccase.  相似文献   
9.
Eurasian Soil Science - Humic acids (HAs) make up to 30–50% of the soil organic matter, which is the main reservoir of organic carbon in the biosphere. The common isolation protocol for HAs...  相似文献   
10.
Phenolic acids play an important role in the formation of soil profiles, however their cooperative sorption by mineral phases under environmentally relevant concentrations is poorly studied. In the present work the sorption of an equimolar mixture of phenolic acids by kaolinite modified with amorphous aluminum hydroxide has been studied under both batch and continuous-flow conditions. It has been found that the sorption of gallic and protocatechuic acids containing OH groups in the ortho position exceeds the sorption of p-hydroxybenzoic and methoxylated acids (vanillic, syringic, and ferulic) by an order of magnitude. The study of sorption under dynamic (continuous-flow) conditions has shown the competition of acids for binding sites, while the active centers of kaolinite-Al(OH)x are being occupied. The sorbed gallic acid displaces the other acids, which pass into solution in the following order: p-hydroxybenzoic acid > vanillic acid > syringic acid ? ferulic acid > protocatechuic acid. The revealed regularities indicate potentially important role of ortho-substituted hydroxybenzoic acids in the formation of soil organic matter, while p-hydroxybenzoic, vanillic, and syringic acids can be more important for the composition of soil solutions and natural waters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号