首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   2篇
农学   1篇
  8篇
综合类   2篇
农作物   2篇
畜牧兽医   1篇
园艺   1篇
植物保护   61篇
  2023年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有76条查询结果,搜索用时 46 毫秒
1.
In memoriam     
  相似文献   
2.
Trichoderma isolates are known for their ability to control plant pathogens. It has been shown that various isolates of Trichoderma, including T. harzianum isolate T-39 from the commercial biological control product TRICHODEX, were effective in controlling anthracnose (Colletotrichum acutatum) and grey mould (Botrytis cinerea) in strawberry, under controlled and greenhouse conditions. Three selected Trichoderma strains, namely T-39, T-161 and T-166, were evaluated in large-scale experiments using different timing application and dosage rates for reduction of strawberry anthracnose and grey mould. All possible combinations of single, double or triple mixtures of Trichoderma strains, applied at 0.4% and 0.8% concentrations, and at 7 or 10 day intervals, resulted in reduction of anthracnose severity; the higher concentration (0.8%) was superior in control whether used with single isolates or as a result of combined application of two isolates, each at 0.4%. Only a few treatments resulted in significant control of grey mould. Isolates T-39 applied at 0.4% at 2 day intervals, T-166 at 0.4%, or T-161 combined with T-39 at 0.4% were as effective as the chemical fungicide fenhexamide. The survival dynamics of populations of the Trichoderma isolates (T-39, T-105, T-161 and T-166) applied separately was determined by dilution plating and isolates in the mixtures calculated according to the polymerase chain reaction (PCR) using repeat motif primers. The biocontrol isolates were identified to the respective species T. harzianum (T-39), T. hamatum (T-105), T. atroviride (T-161) and T. longibrachiatum (T-166), according to internal transcribed spacer sequence analysis.  相似文献   
3.
Yigal Elad 《Phytoparasitica》1991,19(3):201-209
Difluoromethylornithine (DFMO) — an inhibitor of polyamine biosynthesis, and the polyamine spermidine (Spd) reduced gray mold of tomato, pepper, eggplant, bean andSenecio sp. leaves, and of rose petals by 37–88% when applied at 0.1–1.0 mM each. Higher doses did not result in better control. The disease was also reduced significantly on tomato fruits by 1.0 inM DFMO and by 0.1–1.0 mM Spd, and on cucumber fruits by 0.1–1.0 mM of both compounds, but not on grape berries. The combination of 0.2 mM DFMO with 1.0 mM Spd controlled gray mold ofSenecio sp. and tomato leaves additively better than either treatment alone, whereas this effect was not observed in leaves of lettuce and pepper. Ethylene production was reduced significantly by Spd applied to leaves of tomato and pepper, but not by DFMO. Linear growth and germination of the fungus were affected by lower concentrations of DFMO (ED50 0.12–0.97 and 1.4, respectively) as compared with Spd. Spermidine and DFMO controlled white mold(Sclerotinia sclerotiorum) as effectively as did the fungicide benomyl. Contribution from the Agricultural Research Organization. No. 3195-E, 1991 series.  相似文献   
4.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   
5.
6.
ATrichoderma-selective agar medium (TSM) was developed for quantitative isolation ofTrichoderma spp. from soil. Selectivity was obtained by using chloramphenicol as a bacterial inhibitor, and pentachloronitrobenzene, p-dimethylaminobenzenediazo sodium sulfonate and rose-bengal as selective fungal inhibitors. The TSM also contains a low concentration of glucose which still allows relatively rapid growth and sporulation ofTrichoderma, enabling convenient and rapid identification ofTrichoderma colonies. All the 15Trichoderma isolates tested formed colonies and grew well on this medium. Recovery ofTrichoderma from artificially inoculated soils was high and was not affected by soil type or by other microorganisms. A positive correlation was observed betweenTrichoderma added to soil and counts ofTrichoderma colonies on TSM plates. When combined with a soil pellet sampler, the selective medium was also used successfully for recovery of the indigenousTrichoderma population of natural soils.  相似文献   
7.
Spray mixtures consisting of the plant activator BABA (DL-3-aminobutyric acid) and the protectant fungicide mancozeb were significantly more effective than BABA or mancozeb alone in controlling late blight (Phytophthora infestans) in potato and tomato and downy mildew (Pseudoperonospora cubensis) in cucumber. A mixture composed of 5 parts BABA and 1 part mancozeb (w/w, a.i.) exhibited a higher synergy factor than the 1+1 or the 1+5 (BABA + mancozeb) mixtures. No synergistic interaction was detected between BABA plus mancozeb in controlling sporangial or cystospore germination, nor mycelial growth ofP. infestans in vitro. The results showed enhanced effect of mancozeb in BABA-induced plants, suggesting, therefore, that lower dosages of this fungicide may be sufficient to control late blight or downy mildew under field conditions. http://www.phytoparasitica.org posting July 15, 2003.  相似文献   
8.
Therapy of canine dirofilariois due to Dirofilaria repens is indicated for dogs suffering from clinical signs of this disease, such as dermal swelling, sub-cutaneous nodules and pruritus. It is also important in order to decrease the risk of infection to other dogs and humans in the vicinity of the infected animal when suitable mosquito vectors are present. Combined therapy with the arsenic adulticide melarsomine and the avermectin microfilaricidal doramectin was effective in clearing infection with D. repens in a dog. The number of microfilariae dropped from 17 microl(-1) blood pre-treatment to 7 microl(-1) following the first adulticide injection and reached 0 a day after the microfilaricidal administration. The dog remained negative for D. repens microfilaremia during a follow-up period of 90 days. Euthanasia and necropsy performed 3 months after the initiation of therapy due to a progressive neoplastic disease revealed no evidence of filariae.  相似文献   
9.
Dry mycelium (DM) of killedPenicillium chrysogenum and its water extract (DME) were used to induce resistance in cotton plants againstFusarium oxysporum f.sp.vasinfectum (Fov). Results showed that the efficacy of either DM or DME in controlling the disease depends on both the concentration and the mode of application. DM amended to the soil at 0.25–2% (w/w) provided 32–75% protection againstFov. Soil drench with 2–5% DME (w/v) and pre-sowing seed soakage with 5–10% DME provided 51–77% and 28–35% protection against the wilt disease, respectively, whereas no protection was obtained with foliar sprays of 1–10% DME. DM and its water extract had no direct antifungal activity on growth ofFov in vitro, suggesting that disease control with DM or DME resulted from the induction of natural defense mechanisms in the cotton plants. Soil drench with 5% DME was as effective as 2% DM powder in inducing resistance againstFov, implying that the resistance-inducing substances were mostly water-soluble. Four cotton cultivars with various genetic resistance levels againstFov were tested at the seedling stage: two resistant ‘Pima’ cultivars and two susceptible ‘Acala’ cultivars. The level of protection achieved in the two susceptible cultivars with DME was equal to, or higher than, that of the two resistant cultivars treated with water. Innate and induced peroxidase activity in cotyledons or hypocotyls and roots coincided with the level of genetic resistance and DME-induced resistance, respectively. Based on our results, an integrated control strategy ofFov with both genetic resistance and induced resistance is suggested.  相似文献   
10.
Amzalek E  Cohen Y 《Phytopathology》2007,97(2):179-186
ABSTRACT Four inducers of systemic acquired resistance (SAR) were examined for their efficacy in controlling rust infection caused by Puccinia helianthi in sunflower plants. Of the four compounds, DL-3-amino-n-butanoic acid (DL-beta-aminobutyric acid [BABA]) was the most effective and sodium salicylate (NaSA) was the least effective in protecting against rust. In leaf disk assays, full protection was obtained with BABA at 25 mug/ml, benzodiathiazol-S-methyl ester (BTH) at 100 mug/ml, 2,6-di-chloroisonicotinic acid (INA) at 100 mug/ml, and NaSA at >200 mug/ml. L-2-amino-n-butanoic acid (AABA) was partially effective, whereas N-methyl-BABA and 4-aminobutnoic acid (GABA) were ineffective. The R-enantiomer of BABA, but not the S-enantiomer, was more effective than the racemic mixture. In intact plants, BABA applied as a foliar spray or a root dip, before or after (up to 48 h) inoculation, provided significant protection for 8 days. BTH, INA, and NaSA were less protective and more phytotoxic compared with BABA. BABA did not affect urediospore germination, germ tube growth, appressorial formation, or initial ingress of P. helianthi, but strongly suppressed mycelial colonization in the mesophyll and, consequently, pustule and urediospore formation. No accumulation of defense compounds (phenolics, lignin, or callose) was detected in BABA-treated inoculated or noninoculated plants. This is the first report on the activity of BABA against an obligate Basidomycete pathogen in planta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号