首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  16篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  1998年   2篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   
2.
The contributions of root and microbial respiration to the total emission of CO2 from the surface of gray forest and soddy-podzolic soils were compared under laboratory and field conditions for the purpose of optimizing the field version of the substrate-induced respiration method. The magnification coefficients of respiration upon the addition of saccharose (k mic) were first determined under conditions maximally similar to the natural conditions. For this purpose, soil cleared from roots was put into nylon nets with a mesh size of 40 μm to prevent the penetration of roots into the nets. The nets with soil were left in the field for 7–10 days for the compaction of soil and the stabilization of microbial activity under natural conditions. Then, the values of k mic were determined in the root-free soil under field conditions or in the laboratory at the same temperature and water content. The contribution of root respiration as determined by the laboratory version of the substrate-induced respiration method (7–36%) was lower compared to two field versions of the method (27–60%). Root respiration varied in the range of 24–60% of the total CO2 emission from the soil surface in meadow ecosystems and in the range of 7–56% in forest ecosystems depending on the method and soil type.  相似文献   
3.
An hypothesis about the different temperature dependences of the decomposition of the labile and stable organic carbon pools has been tested using an agrochernozem sampled from an experimental plot of 42-year-old continuous corn in Voronezh oblast. The partitioning of the CO2 loss during the decomposition of the labile and stable soil organic matter (SOM) at 2, 12, and 22°C in a long-term incubation experiment was performed using the method of 13C natural abundance by C3–C4 transition. On the basis of the determined decomposition constants, the SOM pools have been arranged in an order according to their increasing stability: plant residues < new (C4) SOM < old (C3) SOM. The tested hypothesis has been found valid only for a limited temperature interval. The temperature coefficient Q 10 increases in the stability order from 1.2 to 4.3 in the interval of 12–22°C. At low temperatures (2–12°C), the values of Q 10 insignificantly vary among the SOM pools and lie in the range of 2.2–2.8. Along with the decomposition constants of the SOM, the new-to-old carbon ratio in the CO2 efflux from the soil and the magnitude of the negative priming effect for the old SOM caused by the input of new organic matter depend on the temperature. In the soil under continuous corn fertilized with NPK, the increased decomposition of C3 SOM is observed compared to the unfertilized control; the temperature dependences of the SOM decomposition are similar in both agrochernozem treatments.  相似文献   
4.
The intensity of decomposition of the organic matter in the particle-size fractions from a agrogray soil sampled in a 5-year-long field experiment on the decomposition of corn residues was determined in the course of incubation for a year. The corn residues were placed into the soil in amounts equivalent to the amounts of plant litter in the agrocenosis and in the meadow ecosystem. A combination of three methods—the particle-size fractionation, the method of 13C natural abundance by C3–C4 transition, and the method of incubation—made it possible to subdivide the soil organic matter into the labile and stable pools. The labile pool reached 32% in the soil of the agrocenosis and 42% in the meadow soil. Owing to the negative priming effect, the addition of C4 (young) carbon favored the stabilization of the C3 (old) carbon in the soil. When the young carbon was absent, destabilization or intense decomposition of the old organic matter was observed. This process was found even in the most stable fine silt and clay fractions.  相似文献   
5.
The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.  相似文献   
6.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   
7.
In a greenhouse experiment with continuous labeling of oat plants in a 13CO2 atmosphere, the ratios between different carbon and nitrogen pools in the rhizosphere and nonrhizosphere soil, i.e., the values of the rhizosphere factor R f , were determined. The mean values of the rhizosphere factor varied from 0.9 (the water-soluble nitrogen pool) to 4.6 (the pool of 13C-labeled dissolved organic carbon). We split the carbon and nitrogen pools into three groups depending on the mean R f value. Group I with high R f values (>2) included the most labile labeled organic carbon pools and the active component of the soil microbial biomass. Group II with the rhizosphere factor values 1 < R f < 2 included the more conservative pools of the total dissolved organic carbon and the microbial biomass in the soil. The only representative of group III (R f < 1) was the water-soluble nitrogen pool. The dynamics of the rhizosphere factor had a maximum during the period of the rapid root growth rate (the tillering, booting, and earing stages) for most members of group I; a maximum during the period of the intensive root turnover (the milk ripeness and wax stages) was detected for the pools-representatives of group II. The dynamics of the rhizosphere factor for the soluble nitrogen had no prominent trends.  相似文献   
8.
Global warming can lead to a significant transformation of the structure of terrestrial ecosystems and changes in the mode of functioning of their components. In this connection, studies of soil respiration, particularly of the biological activity of soils under forest exposed to warm impact of flaring flare are of scientific and practical interests. A long-term experimental plot was established in a lichen pine forest on the Albic Podzols (Arenic) (Khanty-Mansi Autonomous Area-Yugra). Sampling and measurements were carried out in the areas at the distances of 70, 90, and 130 m from the flare with the strong, moderate, and weak heating effects, respectively. In the zone of the maximum heating effect, the soil temperature was by 1.3°C higher, and the rate of CO2 emission from the surface in situ was greater by 18% compared to the zone with weak impact of the flare. Along with increasing CO2 emissions, organic matter accumulated due to increasing the stable pool. The parameters of the microbial biomass, basal respiration, and the input of labile organic matter pool increased with the distance from the flare.  相似文献   
9.
The effect of droughts and drying-wetting cycles on the respiration activity of agrogray soils was studied in field and laboratory experiments. The alternation of drought periods and rains during the vegetation season did not increase the annual emission of CO2 from the soils under a sown meadow and an agrocenosis. In laboratory experiments, the wetting of dried soil released 1–1.5% of Corg with a high decomposition constant n × 10−1 day−1 and a very short renewal time (2.1–2.4 days); therefore, an abrupt change in the wetting conditions did not intensify the loss of soil carbon under field conditions.  相似文献   
10.
The changes in size, activity and structure of soil microbial community caused by N fertilization were studied in a laboratory incubation experiment. The rates of N fertiliser applied (KNO3) were 0 (control), 100 and 2,000 μg N g−1 soil. Despite no extra C sources added, a high percentage of N was immobilized. Whereas no significant increase of microbial C was revealed during incubation period, microbial growth kinetics as determined by the substrate-induced growth-response method demonstrated a significant decrease in the specific growth rate of microbial community in soil treated with 2,000 μg N g−1 soil. Additionally, a shift in microbial community structure resulting in an increase in fungal biomarkers, mainly in the treatment with 2,000 μg N g−1 soil was visible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号