首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
基础科学   1篇
  14篇
综合类   1篇
畜牧兽医   4篇
园艺   1篇
植物保护   1篇
  2017年   1篇
  2016年   1篇
  2013年   6篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Beef marbling is an important trait of meat quality and beef marbling influences the tenderness and flavor of beef, which contributes directly to the value of beef especially in the Japanese market. The lipid content of beef depends on the strain, sex, diet and fattening period of the animal. Japanese Black cattle (Wagyu) are well‐known for their ability to produce marbling beef and this is a popular strain in Japan. The development of beef marbling was closely associated with an increase in the number of adipocytes, that is, adipocyte differentiation in the skeletal muscle. This review article describes our experiment and related reports on micronutrients, especially vitamins and minerals, affecting adipogenesis in beef cattle. We pursue the possibility that manipulating the level of dietary micronutrients may become a new technique to promote beef marbling.  相似文献   
3.
ABSTRACT This experiment was conducted to investigate leptin mRNA expression, adipocyte size, and their relationship in several adipose tissues of fattening steers. Subcutaneous, perirenal, intermuscular and intramuscular adipose tissues were collected from three crossbred steers (Japanese Black cattle X Holstein) aged 21 months. The mRNA level and adipocyte diameter were determined in these adipose tissues. The intramuscular adipose tissue had a lower leptin mRNA level than the intermuscular and perirenal adipose tissues (P < 0.05). Leptin mRNA level was lower in the subcutaneous depot than in the intermuscular depot (P < 0.05). Adipocyte diameter was larger in the intermuscular adipose tissue than in the subcutaneous and intramuscular adipose tissues (P < 0.05). Leptin mRNA level was positively correlated with adipocyte diameter (r2 = 0.81, P < 0.05). These results suggest that the cattle have fat depot‐specific differences in leptin gene expression, which are a result of a difference in adipocyte size.  相似文献   
4.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   
5.
ABSTRACT

Soil salinity is a major abiotic factor limiting crop production but an amendment with synthetic zeolite may mitigate effects of salinity stress on plants. The objective of the study was to determine the effects of zeolite on soil properties and growth of barley irrigated with diluted seawater. Barley was raised on a sand dune soil treated with calcium type zeolite at the rate of 1 and 5% and irrigated every alternate day with seawater diluted to electrical conductivity (EC) levels of 3 and 16 dS m?1. Irrigation with 16 dS m?1 saline water significantly suppressed plant height by 25%, leaf area by 44% and dry weight by 60%. However, a substantial increase in plant biomass of salt stressed barley was observed in zeolite-amended treatments. The application of zeolite also enhanced water and salt holding capacity of soil. Post-harvest soil analysis showed high concentrations of calcium (Ca2 +), magnesium (Mg2 +), sodium (Na+), and potassium (K+) due to saline water especially in the upper soil layer but concentrations were lower in soils treated with zeolite. Zeolite application at 5% increased Ca2 + concentration in salt stressed plants; concentrations of trace elements were also increased by 19% for iron (Fe2 +) and 10% for manganese (Mn2 +). The overall results indicated that soil amendment with zeolite could effectively ameliorate salinity stress and improve nutrient balance in a sandy soil.  相似文献   
6.
A drip irrigation system has the advantage of maintaining high water content near the plant root. However, its performance depends on water quality as it may induce the emitter clogging. In the Tohaku National Irrigation Project, in western Japan, mist spray emitters are widely used for irrigation in the field and greenhouses for vegetable and orchard crops. Seven emitters of different types were evaluated for the variation in their discharge rate without filter. The statistical analysis of mean discharge ratio and the coefficient of variation of the performance of emitters along a lateral line in the field indicated that the mist spray emitters had the best performance for irrigation in Tohaku area, particularly the new emitters or 1-year old emitters. The results suggest that after using the emitter line for two irrigation seasons it should either be replaced in the third season or washed carefully if further used.  相似文献   
7.
ABSTRACT

Crop genotypes that make best use of potassium (K) fertilizers can promote agricultural sustainability. However, screening germplasm collections for responses to K fertilizers is often laborious and expensive. To reduce costs, the number of K fertilizer treatments required to identify better genotypes should be minimized. This might be achieved by exploiting the mathematical relationships between biomass, plant K content, and K supply. This study employed 14 barley (Hordeum vulgare L.) genotypes growing in a hydroponics system that allowed the K supply to roots to be controlled through the K concentration in a flowing solution. It sought to determine the minimal number of treatments required to model the relationships between (a) shoot biomass and K supply, (b) plant K content and K supply, and (c) shoot biomass and plant K content. The relationships between (a) shoot biomass and K supply and (b) plant K content and K supply for any given genotype could be fitted by Michaelis–Menten equations and each of these could be estimated from data obtained at two, appropriately-chosen, rates of K supply. The relationship between shoot biomass and plant K content could be estimated from these relationships. However, the optimum K supply required for accurate estimates differed between genotypes and whether shoot biomass or plant K content was to be estimated. It is, therefore, suggested that the relationships between shoot biomass, plant K content, and K supply might best be determined from measurements of biomass and K content at three, carefully-selected, rates of K supply.  相似文献   
8.
Adequate sulfur (S) nutrition is critical for sustaining yields in crop rotation systems. Because of slow oxidation of elemental S (S°), research on S° fertilizers has emphasized improving the short‐term availability, while the long‐term effects of S° have been overlooked. The effectiveness of a dispersible granule S° fertilizer (SF: Sulfer95), consisting of S° particles smaller than any S° fertilizer reported in literature (< 44 μm in diameter), was compared to gypsum (CS: CaSO4) and ammonium sulfate [AS: (NH4)2SO4] in a three‐year experiment (1997—1999) on a moderately S deficient Black Chernozem soil (Typic Cryoboroll). The three S fertilizers were applied to canola (Brassica rapa L.) at 20, 40, and 80 kg S ha‐1, supplemented with corresponding rates of nitrogen (N) fertilizer in the first year. The control treatment (CT) received N only. Barley (Hordeum vulgare L.) and peas (Pisum sativum L.) were grown in the second and third years to test the availability of residual S. Although the yield of canola in SF fertilized treatments was only slightly higher than in CT, available S provided by SF produced a higher physiological S efficiency (PSE). Superior yields with residual SF were obtained in the second and third years by barley and peas at the rate of 80 kg S ha‐1 applied in the first year, indicating that slow oxidation of SF was beneficial to the crops subsequently grown. Over three years, the total crop S uptake was 21, 4.0, and 15% higher with SF than with CT, CS, and AS, respectively.  相似文献   
9.
10.
Abstract

Radioactive cesium (Cs) deposited after the Fukushima Daiichi Nuclear Power Station accident contaminated farmyard manure (FYM) in the wide area surrounding the plant. We conducted a field trial to determine the transfer factor of radioactive Cs to forage corn (Zea mays L.) from soil to which the contaminated FYM had been applied. The main purpose of this experiment was to examine the behavior of the radioactive Cs from contaminated FYM that was incorporated in agricultural fields. Application of FYM containing 3900 Bq kg?1 dry matter (DM) of cesium-137 (137Cs) at a rate of 4.3 kg m?2 increased the 137Cs concentration in the soil by 64 Bq kg?1 dry soil, and in the forage corn by 9.2 Bq kg?1 DM. Therefore, we calculated the transfer factor to corn plants from the soil after application of contaminated FYM to be 0.14. This value is lower than that observed for soil to which uncontaminated FYM had been applied as a control, and it is within the range of reported soil-to-plant transfer factors of 0.003–0.49 listed in the recent parameter handbook by International Atomic Energy Agency. The increase in the radioactive Cs concentration in the corn plants, expressed as the sum of 137Cs and cesium-134 (134Cs), was only 3% of the 2012 provisional tolerance level for cattle roughage in Japan. Even though the application of contaminated FYM did not cause a large change in the radioactive Cs concentration in the corn plants in this trial, such application should be carefully controlled because it increased radioactive Cs concentrations in both soil and forage corn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号