首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
林业   1篇
  6篇
综合类   1篇
农作物   1篇
畜牧兽医   1篇
园艺   3篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2005年   1篇
  2002年   1篇
  1998年   2篇
  1995年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Summary Estimates of ammonium and nitrate availability in conifer and hardwood forests using an ion exchange resin (IER) bag method and with on-site incubations of soil cores in buried bags were compared. Correlations between the two methods were generally high. Correlation coefficients (r) between IER nitrate and buried-bag mineralized nitrate ranged from 0.87 to 0.92. Both methods also correlated well with aboveground net primary production, litter fall N content, and fine root biomass. The major differences between the methods related to the relative importances of ammonium and nitrate forms of available N. The IER method indicated that both ammonium and nitrate were important on all sites, with nitrate predominating in most soils. The buried-bag results indicated that available N was primarily in the form of nitrate (all ammonium was oxidized), but that nitrate was insignificant on infertile sites.  相似文献   
2.
Results from four intensive site-level manipulations and one extensive field survey in northern temperate and boreal forests show a consistent set of responses to chronic N additions. These include 1) initial and often large increase in net N mineralization followed by decreases, 2) increases in net nitrification. 3) increases in N concentration in foliage, and 4) decreased Mg∶N and Ca∶Al ratios, and declining tree growth and vigor in all evergreen stands. These results are synthesized into a set of proposed summary relationships that define the temporal pattern of responses of N-limited systems to N additions.  相似文献   
3.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   
4.
5.
The purpose of the present study was to determine the normal sequence for the gene encoding factor IX in cats and to characterize the genetic basis for hemophilia B in 2 unrelated male, domestic, mixed-breed cats. Genomic DNA sequence for the entire coding region of the factor IX gene was determined in the affected cats and compared to the sequence obtained from a healthy cat. The factor IX gene in cats encodes a mature protein consisting of 420 amino acids, unlike genes in humans and dogs that encode 415 and 413 amino acid proteins, respectively. Affected cat 1 had a single nucleotide change in exon 8 at the 1st nucleotide position of the codon encoding an arginine (CGA to TGA) at amino acid position 338. This mutation would be predicted to result in the appearance of a premature stop codon in the portion of the gene encoding much of the catalytic domain of the protein. Affected cat 2 had a single nucleotide change in exon 4 at the 2nd nucleotide position of the codon encoding amino acid 82 (TGT to TAT), which would be predicted to result in the substitution of a tyrosine for a cysteine. This substitution would likely result in disruption of a disulfide bond crucial to normal protein structure and function. This study represents the 1st time hemophilia B has been characterized at the molecular level in cats.  相似文献   
6.
We used the PnET-II model of forest carbon and water balances to estimate regional forest productivity and runoff for the northeastern United States. The model was run at 30 arc sec resolution (approximately 1 km) in conjunction with a Geographic Information System that contained monthly climate data and a satellite-derived land cover map. Predicted net primary production (NPP) ranged from 700 to 1450 g m2 yr1 with a regional mean of 1084 g m2 yr1. Validation at a number of locations within the region showed close agreement between predicted and observed values. Disagreement at two sites was proportional to differences between measured foliar N concentrations and values used in the model. Predicted runoff ranged from 24 to 150 cm yr1with a regional mean of 63 cm yr1. Predictions agreed well with observed values from U.S. Geologic Survey watersheds across the region although there was a slight bias towards overprediction at high elevations and underprediction at lower elevations.Spatial patterns in NPP followed patterns of precipitation and growing degree days, depending on the degree of predicted water versus energy limitation within each forest type. Randomized sensitivity analyses indicated that NPP within hardwood and pine forests was limited by variables controlling water availability (precipitation and soil water holding capacity) to a greater extent than foliar nitrogen, suggesting greater limitations by water than nitrogen for these forest types. In contrast, spruce-fir NPP was not sensitive to water availability and was highly sensitivity to foliar N, indicating greater limitation by available nitrogen. Although more work is needed to fully understand the relative importance of water versus nitrogen limitation in northeastern forests, these results suggests that spatial patterns of NPP for hardwoods and pines can be largely captured using currently available data sets, while substantial uncertainties exist for spruce-fir.  相似文献   
7.
Soil warming and carbon-cycle feedbacks to the climate system   总被引:10,自引:0,他引:10  
In a decade-long soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon and nitrogen cycling in order to investigate the consequences of these changes for the climate system. Here we show that whereas soil warming accelerates soil organic matter decay and carbon dioxide fluxes to the atmosphere, this response is small and short-lived for a mid-latitude forest, because of the limited size of the labile soil carbon pool. We also show that warming increases the availability of mineral nitrogen to plants. Because plant growth in many mid-latitude forests is nitrogen-limited, warming has the potential to indirectly stimulate enough carbon storage in plants to at least compensate for the carbon losses from soils. Our results challenge assumptions made in some climate models that lead to projections of large long-term releases of soil carbon in response to warming of forest ecosystems.  相似文献   
8.
Zinc (Zn) and boron (B) disorders are common nutritional stresses in arid and semi-arid regions. In the current study, effectiveness of soil Zn amendment (0, 5.0, 10.0, and 20.0 mg kg–1 soil) using Zn-glycine chelate (Zn-Gly), a novel Zn-fertilizer, which is especially synthesized for application in calcareous soils in arid and semi-arid areas, was evaluated under different soil B levels (0, 2.5, 5.0, 10.0, and 20.0 mg kg–1 soil) for a 100-day period. Pistachio, the most valuable crop grown under arid conditions, was used as the model plant. Measurement of electrolyte leakage, H2O2, and malondialdehyde indicated the incidence of oxidative stress in the leaves of pistachio under low and high soil B concentrations. In addition, B stress caused a significant increase in lipoxygenase activity in the leaves. Plants treated with 5.0 mg B kg–1 soil showed the lowest oxidative stress injuries and lipid peroxidation. Application of 5.0 mg Zn kg–1 soil significantly alleviated the B stress damages, however, the ameliorative effect of Zn was vanished by application of higher Zn concentrations. Evaluation of the antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], or ascorbate peroxidase [APX]) and non-enzyme antioxidants (ascorbate and phenolic compounds) revealed that the protective effects of Zn-Gly against B stress are due to enhancement of cell antioxidant defense. In conclusion, application of Zn-Gly for reducing oxidative stress pressure in pistachio plants grown under B disorder was suggested.  相似文献   
9.
Generalized allometric equations for several tree species were developed to assess the feasibility of using such equations for sites other than those for which they were developed. Regressions relating weight of stem, branch, and total above ground biomass to DBH (diameter at breast height, 1.3 m) were compiled for six species from the literature and used to generate new generalized regressions by species and plant part. Mean differences between values predicted by the generalized regressions and estimates from original regressions for total above ground weight were generally within the range of errors of estimate reported for individual regressions. The generalized regressions do not introduce bias into the results with increasing dbh. Differences between the generalized regressions and the original regressions for stem and branch weights of all species were considerably higher. Tests of generalized regressions against field data for sugar maple and aspen indicate excellent prediction by a generalized maple regressions but somewhat less accurate predictions by generalized aspen regressions.  相似文献   
10.
Chronic N deposition has been hypothesized to affect DOC production in forest soils due to the carbon demand exerted by microbial immobilization of inorganic N. We tested this hypothesis in field experiments at the Harvard Forest, Petersham, Massachusetts, USA. During four years of sampling soil solution collected beneath the forest floor in zero-tension lysimeters, we observed little change in DOC concentrations (10-30% increase, not statistically significant) associated with elevated N inputs, but did observe significant increases in DON concentrations. Both DOC and DON varied seasonally with highest concentrations in summer and autumn. Mean DON concentrations increased 200-300 % with the highest rate of inorganic N fertilization, and concentrations of DON were highest in samples with high inorganic N concentrations. We conclude that the organic chemistry of soil solution undergoes qualitative changes as a result of long-term N amendment at this site, with small changes in DOC, large increases in DON, and a decline in the C:N ratio of dissolved organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号