首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
林业   2篇
  21篇
综合类   1篇
农作物   1篇
水产渔业   6篇
畜牧兽医   19篇
植物保护   3篇
  2022年   2篇
  2021年   1篇
  2016年   2篇
  2015年   2篇
  2013年   13篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
1.
The purpose of this study was to determine the concentrations of antimicrobial components (immunoglobulin A (IgA), lactoferrin (LF), lingual antimicrobial peptide (LAP), and S100A7) in normal milk and their relation to host factors (Age, somatic cell count (SCC), days in milk, richness, and alpha diversity of the milk microbiota) in dairy cows using multivariate regression tree analyses, and to clarify how the milk microbiota is related to the obtained results. Thirty normal milk samples were collected from a commercial dairy farm in June 2020. The thresholds that predicted the concentration of each antimicrobial component in milk were obtained by regression tree analysis, and the beta-diversity of the milk microbiota composition between groups divided according to each threshold was compared by an analysis of similarities test. The IgA and LF concentrations were mainly predicted by the SCC (177,500 and 70,000 cells/ml, respectively), and the LAP and S100A7 concentrations were predicted by Age (29.667 and 40.3 months, respectively). No relationship was observed between the concentration of IgA, LAP, or S100A7 and the milk microbiota composition between the groups divided by the threshold for prediction, but the milk microbiota composition was significantly different between the groups divided by the threshold for predicting the LF concentration. Our results indicated that the LF concentration in normal milk may be associated with the milk microbiota composition.  相似文献   
2.
To find a new parameter indicating muscle fitness in Thoroughbred horses, we examined time-dependent recovery of glycogen content and sarcoplasmic reticulum (SR) Ca2+-ATPase activity of skeletal muscle after intensive treadmill running. Two repeated 50-sec running sessions (13 m/sec) were performed on a flat treadmill (approximately 90%VO2max). Muscle samples of the middle gluteal muscle were taken before exercise (pre) and 1 min, 20 min, 60 min, and 24 hr after exercise. Muscle fiber type composition was determined in the pre muscle samples by immunohistochemical staining with monoclonal antibody to myosin heavy chain. SR Ca2+-ATPase activity of the muscle and glycogen content of each muscle fiber type were determined with biochemical analysis and quantitative histochemical staining, respectively. As compared to the pre value, the glycogen content of each muscle fiber type was reduced by 15–27% at 1 min, 20 min, and 60 min after the exercise and recovered to the pre value at 24 hr after exercise test. These results indicate that 24 hr is enough time to recover glycogen content after short-term intensive exercise. The mean value of the SR Ca2+-ATPase activity showed a slight decrease (not significant) immediately after exercise, and complete recovery at 60 min after exercise. There were no significant relationship between the changes in glycogen content of each muscle fiber type and SR Ca2+-ATPase. Although further studies are needed, SR Ca2+-ATPase is not a useful parameter to detect muscle fitness, at least in Thoroughbred horses.  相似文献   
3.
Immunostimulatory sequences of oligodeoxynucleotides (ODNs), such as CpG ODNs, are potent stimulators of innate immunity. Here, we identified a strong immunostimulatory CpG ODN, which we named MsST, from the lac Z gene of Streptococcus (S.) thermophilus ATCC19258, and we evaluated its immune functions. In in vitro studies, MsST had a similar ability as the murine prototype CpG ODN 1555 to induce inflammatory cytokine production and cell proliferation. In mouse splenocytes, MsST increased the number of CD80+CD11c+and CD86+CD11c+ dendritic cells and CD4+CD25+ regulatory T cells. We also analyzed the effects of MsST on the expression of regulatory cytokines by real-time quantitative PCR. MsST was more potent at inducing interleukin-10 expression than the ODN control 1612, indicating that MsST can augment the regulatory T cell response via Toll-like receptor 9, which plays an important role in suppressing T helper type 2 responses. These results suggest that S. thermophilus , whose genes include a strong Immunostimulatory sequence-ODN, is a good candidate for a starter culture to develop new physiologically functional foods and feeds.  相似文献   
4.
We evaluated differences in muscle fiber recruitment patterns between continuous and interval training to develop an optimal training program for Thoroughbred horses. Five well trained female thoroughbred horses (3–4 years old) were used. The horses performed two different exercises on a 10% inclined treadmill: 90%VO2 max for 4 min (continuous) and 90% VO2 max for 2 min × 2 times with 10-min interval (interval). Muscle samples were obtained from the middle gluteal muscle before and immediately after the exercises. Four muscle fiber types (type I, IIA, IIA/X, and IIX) were immunohistochemically identified, and the optical density of periodic acid Schiff staining (OD-PAS) in each fiber type and glycogen content of the muscle sample were determined by quantitative histochemical and biochemical procedures, respectively. No significant differences were found in the OD-PASs and glycogen contents between the continuous and interval exercises, but the decreases in OD-PAS of fast-twitch muscle fibers were obvious after interval as compared to continuous exercise. Interval exercise may be a more effective training stimulus for the glycolytic capacity of fast-twitch muscle fiber. The data about muscle fiber recruitment can provide significant insights into the optimal training program not only for thoroughbred horses, but also for human athletes.  相似文献   
5.
6.
The experiment was carried out to investigate the effects of arsenic (As) on the physiological and mineralogical properties of barley (Hordeum vulgare L. cv. ‘Minorimugi’). The plants were grown in nutrient solution treated with 0, 6.7, 33.5, and 67 μ M As (0, 0.5, 2.5, and 5 ppm As, respectively) in the phytotron. Dry matter yield of shoots and roots decreased significantly with the As treatments, indicating that barley plants are As-sensitive and As-toxicity depends on the As concentration in the rooting medium. Necrosis in older leaves and chlorosis symptoms (whitish color) in the fully developed young leaves were observed at the 33.5 and 67 μ M As treatments. Arsenic concentration, accumulation, and translocation increased with the increase of As concentration in the rooting medium. Arsenic was mostly concentrated in roots and a little amount was moved to shoots, indicating that As was not easily translocated to shoots of barley seedlings. Concentrations and accumulations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), zinc (Zn), and copper (Cu) decreased significantly in shoots for 33.5 and 67 μ M As treatments as compared to the 0 μ M As treatment. Concentrations of P, K, Ca, Mg, Mn, and Cu decreased in roots, but Zn concentration increased in roots at 67 μ M As treatment. Accumulations of P, K, Ca, Mg, Mn, Zn, and Cu in roots also decreased significantly at 67 μ M As treatment. Accumulation of P and the cations showed negative relationship with As. Concentration of Fe decreased in shoots at 33.5 and 67 μ M As treatments where chlorosis was induced in the young leaf but increased in roots at 33.5 and 67 μ M As treatments. It was suggested that As might induce iron (Fe)-chlorosis in the plants. Among the micronutrients, Fe translocation was more affected than others by As. Phytosiderophore (PS) accumulation in roots, which is a symptom of Fe-deficiency in grasses, did not change significantly between 0 and 33.5 μ M As treatments; indicating that As-induced chlorosis did not enhance PS accumulation in roots and decreased due to As-toxicity at 67 μ M As treatment.  相似文献   
7.
8.
ABSTRACT:   The appropriate water velocity in artificial burrows for theJapanese crayfish species Cambaroides japonicus was studied.An experimental system of two artificial burrows (burrows A and B)of the same size was set in a large tank. The velocity of burrowA was 0 cm/s and that of burrow B was varied andset at 0 cm/s, 5 cm/s, 10 cm/s,20 cm/s and 30 cm/s. The selectionof these two burrows by C. japonicus was observed. No animalsselected burrow B significantly more than burrow A above 10 cm/s.At 20 cm/s, some crayfishes were swept away andcould not return to burrows because of the high water velocity.At 30 cm/s, most animals were swept away. We concludethat the appropriate water velocity for the suitability of artificialburrows and the immediate foraging area adjacent to the burrowsshould be as low as 5 cm/s.  相似文献   
9.
Hydroponically grown barley plants ( Hordeum vulgare L. cv. Minorimugi) under iron-deficient (–Fe) and high phosphorus (P) conditions (500 µmol L−1) showed Fe chlorosis and lower growth compared with plants grown in –Fe and low P conditions (50, 5 and 0.5 µmol L−1). To understand the physiological role of P in regulating the growth of plants in –Fe medium, we carried out an Fe feeding experiment using four P levels (500, 50, 5 and 0.5 µmol L−1) and phytosiderophores (PS), mugineic acid. Our results suggest that plants grown in a high P medium had higher absorption activity of 59Fe compared with plants grown in low P media, irrespective of the presence or absence of added PS. Translocation of 59Fe from roots to shoots was not affected by the P level. The relative translocation rate of 59Fe increased with decreasing levels of P in the medium. In general, the addition of PS enhanced the absorption of 59Fe and its translocation. Taken together these results suggest that the lower relative translocation rate of Fe in high P plants may be induced by the physiological inactivation of Fe in the roots, and the higher absorption activity of Fe in high P conditions possibly results from the response of barley plants to Fe deficiency.  相似文献   
10.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号