首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
林业   1篇
  5篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 343 毫秒
1
1.
Biology and Fertility of Soils - Temporal nitrogen (N) availability in fertilized rice paddies is the result of a balance of processes, mainly the gross rates of N mineralization, microbial and...  相似文献   
2.
In order to evaluate the variability of the soil profiles at two shapes (concave and convex) and five positions (summit, shoulder, back slope, footslope and toeslope) of a slope, a study of a virgin area was made in a Beech stand of mountain forests, northern Iran. Across the slope positions, the soil profiles demonstrated significant changes due to topography for two shape slopes. The solum depth of the convex slope was higher than the concave one in all five positions, and it decreased from the summit to shoulder and increased from the mid to lower slope positions for both convex and concave slopes. The thin solum at the upper positions and concave slope demonstrated that pedogenetic development is least at upper slope positions and concave slope where leaching and biomass productivity are less than at lower slopes and concave slope. A large decrease in the thickness of O and A horizons from the summit to back slope was noted for both concave and convex slopes, but it increased from back slope toward down slope for both of them. The average thickness of B horizons increased from summit to down slopes in the case of the concave slope, but in the case of convex slope it decreased from summit to shoulder and afterwards it increased to the down slope. The thicknesses of the different horizons varied in part in the different positions and shape slopes because they had different plant species cover and soil features, which were related to topography.  相似文献   
3.
The application of municipal waste compost and other organic materials may serve to improve fertility and organic carbon (C) stocks of soils used in land reclamation activities, particularly in the recovery of degraded areas at exhausted quarries, mines and landfill sites amongst others. We investigated long-term organic matter dynamics in such anthropogenic soils by collecting samples at different depths over a 10-year chronosequence subsequent to compost application to the top layer of a landfill capping-soil. Variations in the stable isotope composition (13C and 15N) of the soil samples showed that, even after 10 years, amended topsoils were enriched in compost-derived organic matter. The addition of compost to the superficial layer also resulted in an input of soluble organic compounds that was subject to leaching along the soil profile. Sorption isotherms for compost-derived water-extractable organic matter onto mineral materials used for landfill covering suggest that sorptive preservation was primarily responsible for the increase in C content and the shift in the C isotopic signature to values similar to that of the applied compost, in the deeper soil horizons over the 10-year period. This was also confirmed by the accumulation of lignin-derived phenolic compounds in the deeper horizons. Nevertheless, analysis for non-cellulosic carbohydrates in soil samples and their respective water-extractable fractions suggest that a proportion of the compost-derived, labile organic matter fraction is leached through the profile and potentially lost from the soil system.  相似文献   
4.
The chemical and spectroscopic properties of humic acids (HAs) isolated from four litters and their corresponding underlying soils at three depths in a protected forest area in Southern Italy were investigated as a function of four different plant coverings: Quercus ilex L., mixed Carpinus betulus L. and C. orientalis Mill., Pinus halepensis L., and mixed Quercus trojana Webb. and Q. ilex L.. The forested site is a part of a calcareous plateau, characterized by homogeneous soils classified as Eutric Cambisols associated with Calcic Luvisols. The changes in the composition of HAs with soil depth have been evaluated on the basis of chemical (elemental and COOH groups) and spectroscopic analyses (E4/E6 ratio and FT IR spectra), and lignin-derived CuO oxidation products. A different distribution of the main elements was found in the various HAs which is apparently related to the type of humic acid-precursor biomolecules in the parent litters. The HAs isolated from soils under Q. ilex and mixed Carpinus species showed a slight increase in the C/H ratio and COOH content downward the soil profile, suggesting increasing aromatic polycondensation and humification degree with depth. On the contrary, no trend was observed for HAs from soils under Pinus halepensis L. and mixed Quercus species, indicating a partial incorporation of residues deriving from litter degradation into these HAs. Further, the content of lignin-derived phenols was higher in Pinus halepensis L. and mixed Quercus species layers, with the same trend measured for the corresponding HAs, thus confirming a lignin contribution related to the lignin type of plant covering.  相似文献   
5.
In podzolic B horizons illuviated Al, Fe and organic matter (OM) increase with the ongoing of the pedogenic process. Depending on OM load on mineral surfaces, modifications of the soil surface properties are expected and may influence OM stabilisation. The proportion of labile organic pools should thus vary depending on the type of podzolic horizon. In this work, we selected B horizons at increasing intensity of podzolisation, evaluated the labile OM pools through oxidation with 2 % NaClO and characterised surface properties with N2 and phosphate sorption. Before and after oxidation, we assessed the NaOH-extractable OM fractions. Oxidation was more effective on the least polar organic compounds and led to an increase in the fulvic to humic acid ratio. Specific surface area (SSA) increased after oxidation only in the least podzolised horizons, while selectively preserved OM induced a decrease in SSA in the more developed Bs, Bsm and Bhs. Phosphate sorption induced a release of OM and always decreased after oxidation, although variations in P affinity for the surfaces were observed. The effect of oxidation on surface parameters pointed to a specific association between organics and minerals that changed during soil development. At the very beginning of podzolisation, the dominant forms seemed related to organo-metallic complexes with little interaction with surfaces. With Bs development, weak interactions between mineral surfaces and OM appeared, while at a later stage OM differentiated into bulky structures and tightly bound, rigid ones, with extremely low N2 accessibility. The latter were not sensitive to low concentration NaClO while the former were easily oxidised.  相似文献   
6.
Long-term paddy management promotes nitrogen (N) sequestration, but it is unknown to what extent the properties of the parent soil modify the management-induced N sequestration in peptide-bound amino acids (AA-N). We hypothesized that paddy management effects on the storage of AA-N relate to the mineral assembly. Hence, we determined contents and chirality of peptide-bound amino acids in paddy soils developed on contrasting parent material (Vertisols, Andosols, Alisols in Indonesia, Alisols in China, and Gleysol/Fluvisol in Italy). Adjacent non-paddy soils served as references. Selected samples were pre-extracted with dithionite–citrate–bicarbonate (DCB) to better understand the role of reactive oxide phases in AA-N storage, origin, and composition. The results showed that topsoil N and AA-N stocks were significantly larger in paddy-managed Andosols and Chinese Alisols than in their non-paddy counterparts. In other soils, however, paddy management did not cause higher proportions of N and AA-N, possibly because N fixing intercrops masked the paddy management effects on N sequestration processes. Among the different soils developed on contrasting parent material, AA-N stocks were largest in Andosols, followed by Alisols and Fluvisols, and lowest in Vertisols. The N storage in amino acid forms went along with elevated d-contents of bacteria-derived alanine and glutamic acid, as well as with increasing stocks of DCB-extractable Fe, Mn, and Al. Other d-amino acids, likely formed by racemization processes, did not vary systematically between paddy and non-paddy managed soils. Our data suggest that the presence of oxides increase the N sequestration in peptide-bound amino acids after microbial N transformations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号