首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  5篇
综合类   1篇
  2022年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  1984年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Journal of Soils and Sediments - In this study, the effectiveness of in situ sediment capping was investigated as a remediation option for total mercury (THg) and methylmercury (MeHg) in the...  相似文献   
2.

Purpose

Sediment contamination in US waterways is an expensive and complicated issue, and as acceptance of nontraditional sediment remediation strategies broadens, novel and efficient methods to assess and monitor the bioavailability of hydrophobic organic contaminants (HOCs) in contaminated sediments will play an important role.

Materials and methods

In this project, solid phase microextraction (SPME) fibers inside perforated steel tubes were used as in situ passive samplers to measure polycyclic aromatic hydrocarbon (PAH) concentrations in sediment before and after treatment with activated carbon (AC). Two modes of waterjet amendment injection were used to apply the AC. In the first treatment, a single 2-min injection was shot into the center of a test vessel, and in the second treatment, multiple 7-s injections in a grid were placed in sediment.

Results and discussion

In the single injection, no treatment was observed 5 cm away from the injection, while at 2.5 cm, >90 % decrease of PAH pore water concentration was observed, indicating a similar bioavailability decrease. In the multiple injection experiment, >90 % PAH pore water level reductions were observed throughout the test vessel. Highly contaminated and less contaminated sediments were mixed with 0–5 % AC by weight to develop AC treatment curves. Over 99 % reduction in PAH pore water concentrations and bioavailability was observed in the less contaminated sediment at 3 % AC, while 99 % reduction was never reached even at 5 % AC addition in the highly contaminated sediment. Different treatment curves were observed for the different contaminated sediments. In situ equilibration times were 120, 215, and 250 h for phenanthrene, pyrene, and benzo(a)anthracene, respectively.

Conclusions

The results show that in situ SPME is a viable method to observe AC treatment and evaluate reductions in pore water concentrations and bioavailability.  相似文献   
3.

Purpose

Adsorptive interaction at the solid-water interface plays an important role in the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. This study aims to investigate the contributions of heterogeneous morphology to P adsorption onto mineral particles.

Materials and methods

The dominant minerals in Yellow River sediment, quartz, k-feldspar, and calcite are investigated with adsorption experiments and microscopic examinations. Taylor expansion is applied to quantitatively characterize the heterogeneous surface morphology.

Results and discussion

The results reveal that locally concave or convex micro-morphology characterized by the second derivative term of the Taylor expansion, F 2, can be related to adsorption capacity due to its effect on surface-charge density and distribution. The distribution of adsorbed P as a function of F 2 was determined for selected particles composed of each of the pure minerals and was fit to a Weibull distribution. Each mineral was characterized by F 2a , the weighted average value of F 2, and Weibull distribution factors, and correlated with sorption isotherms. The developed relationships were used to accurately predict adsorption onto individual particles as well as pure mineral samples.

Conclusions

Mineral particles have complex surface morphology, which affects the interface P adsorption. Micro-morphological characterization of F 2 and F 2a can be used to predict adsorption onto the pure minerals, and this study provides physical basis for predicting adsorption on sediment particles composed of these minerals.
  相似文献   
4.
5.

Purpose  

The effects of black carbon (BC) on resistant desorption of organic pollutants in soil and sediment were evaluated to further understand the mechanisms for the resistant desorption and to find a more accurate desorption model which can improve risk assessment and management of ubiquitous soil/sediment contamination.  相似文献   
6.
A mathematical model is developed to investigate the effect of pH and salinity fluctuation on biogeochemical reactions and metals' behavior in sediments. The model includes one-dimensional vertical advective and diffusive transport of species, serial reductions of electron acceptors, and precipitation/dissolution of species, acid–base chemistry, and metal sorption to sediments. The model was tested using data obtained from laboratory microcosm experiments which exposed metal (Cd, Zn) contaminated sediment to alternating fresh and salty overlying water. The model successfully reproduces the contrasting metal's release behavior and the vertical profiles of pH, Cl?, SO4 2?, Mn and Fe in porewater and the acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediments. The model showed that FeOOH(s) was the dominant sorption phase controlling the solubility of the metals at the surficial sediments while AVS controlled the solubility of the metals in anoxic sediments. The model also showed that the release of the metals to overlying water was controlled by the oxidation of metal sulfides in a very thin layer of oxic sediments (2–3 mm). The proposed model can be useful in managing metal contaminated sediments where pH and salinity are fluctuating by assessing the underlying biogeochemical processes and metals' behavior.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号