首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
综合类   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
The rhizosphere is one of the hot spots in soil ecosystems for a variety of microorganisms. In this study, we explored the seasonal change of the microeukaryotic community of a rice rhizosphere focusing on the active members through an RNA-based molecular approach. Rice plants (Oryza sativa L.) were grown in a pot where the rhizosphere was compartmented from bulk soil with a nylon gauze. The Eh in the rhizosphere compartment indicated that the rhizosphere was under oxic conditions in the initial stage of plant growth and then suddenly became anoxic or suboxic. Denaturing gradient gel electrophoresis targeting 18S rRNA-transcribed cDNA demonstrated that the active community of microeukaryotes in the rice rhizosphere was different from that in the bulk soil. The rhizosphere community showed a temporal shift in accordance with the shift of the redox conditions having three stages: the oxic before maximum tillering stage, anoxic/suboxic stage before maximum tillering stage, and anoxic/suboxic stage in the panicle initiation stage and thereafter. Active members specific to the rhizosphere at either the oxic or anoxic/suboxic stage were found: Heterolobosea amoeba, ciliates, and Chytridiomycota fungi for the oxic stage and oomycetes, ciliates and Ascomycota fungi in the anoxic/suboxic stage. The present results demonstrate that a specific group of microeukaryotes inhabit the rice rhizosphere even under anoxic/suboxic conditions and play various ecological roles as plant parasites, microbial grazers and organic decomposers.  相似文献   
3.
Rice roots provide a specific habitat for microorganisms in the rhizosphere of a submerged field through supply of oxygen and organic matter. Many studies have focused on the microbial community in the rice rhizosphere, but less is still known about the microeukaryotic community structure of rice rhizosphere. This study explored the microeukaryotic community structure of a rice rhizosphere through denaturing gradient gel electrophoresis (DGGE) targeting 18S rRNA gene. The rice roots and the rhizosphere soil samples, which were collected from a field under rice-wheat rotation system, were separately analyzed. To characterize the rice rhizosphere-specific community, the bulk soil of rice field and the wheat rhizosphere samples were also examined. DGGE fingerprints showed that the microeukaryotic community of rice roots were distinct from the community of the bulk soil and showed a temporal shift with the growth stage. The rhizosphere soil community was distinct from the root and bulk soil communities, but this could be explained by that the root and bulk soil communities were shared in the rhizosphere. The rice rhizosphere community was also distinct from those in the wheat rhizosphere. Microeukaryotes that characterized the rice rhizosphere (roots and the rhizosphere soil) community could be affiliated to Polymyxa, flagellates, and oomycetes, which suggested that microeukaryotes with various ecological roles, e.g., parasites, bacterial grazers, and decomposers, inhabit the rice rhizosphere. The results showed that the rice root and its growth stages are key factors shaping the microeukaryotic community structure in the rhizosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号