首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
林业   1篇
  12篇
农作物   1篇
  2017年   2篇
  2016年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2001年   2篇
  1997年   2篇
排序方式: 共有14条查询结果,搜索用时 569 毫秒
1.

Purpose

Soil carbon dynamics were studied at four different forest stands developed on bedrocks with contrasting geology in Slovenia: one plot on magmatic granodiorite bedrock (IG), two plots on carbonate bedrock in the karstic-dinaric area (CC and CD), and one situated on Pleistocene coalluvial terraces (FGS).

Materials and methods

Throughfall (TF) and soil water were collected monthly at each location from June to November during 2005–2007. In soil water, the following parameters were determined: T, pH, total alkalinity, concentrations of Ca2+ and Mg2+, dissolved organic carbon (DOC), and Cl? as well as δ13CDIC. On the other hand, in TF, only the Cl? content was measured. Soil and plant samples were also collected at forest stands, and stable isotope measurements were performed in soil and plant organic carbon and total nitrogen and in carbonate rocks. The obtained data were used to calculate the dissolved inorganic carbon (DIC) and DOC fluxes. Statistic analyses were carried out to compare sites of different lithologies, at different spatial and temporal scales.

Results and discussion

Decomposition of soil organic matter (SOM) controlled by the climate can explain the 13C and 15?N enrichment in SOM at CC, CD, and FGS, while the soil microbial biomass makes an important contribution to the SOM at IG. The loss of DOC at a soil depth of 5 cm was estimated at 1 mol m?2 year?1 and shows no significant differences among the study sites. The DOC fluxes were mainly controlled by physical factors, most notably sorption dynamics, and microbial–DOC relationships. The pH and pCO2 of the soil solution controlled the DIC fluxes according to carbonate equilibrium reactions. An increased exchange between DIC and atmospheric air was observed for samples from non-carbonate subsoils (IG and FGS). In addition, higher δ13CDIC values up to ?19.4?‰ in the shallow soil water were recorded during the summer as a consequence of isotopic fractionation induced by molecular diffusion of soil CO2. The δ13CDIC values also suggest that half of the DIC derives from soil CO2 indicating that 2 to 5 mol m?2 year?1 of carbon is lost in the form of dissolved inorganic carbon at CC and CD after carbonate dissolution.

Conclusions

Major difference in soil carbon dynamics between the four forest ecosystems is a result of the combined influence of bedrock geology, soil texture, and the sources of SOM. Water flux was a critical parameter in quantifying carbon depletion rates in dissolved organic and inorganic carbon forms.
  相似文献   
2.
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).  相似文献   
3.

Purpose

The objective of this research is to detect abiotic sources of soil CO2 above a subterranean cave in the Slovenian karst region.

Materials and methods

The research was performed in the forest above Pisani rov (Postojna Cave) near the town of Postojna (SW Slovenia) and also in the cave. Soil gas, atmospheric air and cave air carbon stable isotope composition (δ13CCO2) and CO2 concentration were measured. Sampling and measurements were performed bi-monthly at the test and control sites above the cave. The abiotic source of soil CO2 was estimated using a stable isotope mass balance calculation.

Results and discussion

Similar seasonal patterns of soil CO2 and δ13CCO2 values were observed at both the test and control sites until spring, with higher levels of CO2 observed in summer and lower in winter. The δ13CCO2 showed the opposite trend, i.e. lower values (?26 to ?20 ‰) in summer and higher values (up to ?17 ‰) in winter and early spring. In spring, the soil CO2 concentration decreases and the δ13CCO2 value increases only at the control site. A time series of a modelled “isotopically light” endmember revealed large shifts in the data values, due to the presence of an abiotic CO2 source. Results suggest that the subterranean CO2 pool and its ventilation is the main source of soil CO2, accounting for up to 80 % of the soil gas during cold periods.

Conclusions

Ventilation from subterranean cavities is an important source of soil CO2 in karstic areas and should be taken into account during carbon cycling studies.
  相似文献   
4.
The objective of the investigations of the Cetina River, located in southern Croatia, was to record specific characteristics and properties of the Cetina waters at nine stations. In addition to measurements undertaken in the Cetina River, the water quality of its most significant springs and tributaries, such as Kosinac, ?ilovka, Studenci and Mala Ruda, Velika Ruda and Grab, has also been measured. The water quality in the Cetina watershed has been evaluated in the following storage reservoirs: Peru?a, Bu?ko Blato and Pran?evi?i. The nitrogen compounds and phosphorus concentrations have been estimated at all these sampling sites over a 3-year period (2005–2008). Concentration levels at the Cetina-Vinali? sampling site for total N (from August 2005 to December 2008) ranged from 0 to 1.759 mg/L, for NH3–N from 0 to 0.374 mg/L, for NO3–N from 0.063 to 0.916 mg/L and for PO4–P from 0 to 0.099 mg/L. The results prove that the Cetina-Vinali? sampling site is not polluted by nitrogen and phosphorus compounds. The river section from Trilj to the Pran?evi?i dam, where the water is used for the water supply of Omi?, Makarska and Dalmatian islands, has been polluted by wastewater because the majority of agricultural area, roads, industry and settlements are located upstream of it. The highest concentration for total N of 1.128 mg/L and of 1,527 total coliforms in 100 mL, expressed as a mean value for a 3-year period of investigations, was found at the sampling site Trilj. The results of concentration changes at the ?ikotina La?a and Cetina Radmanove Mlinice sampling sites show no regularities. The highest concentration for total N of 0.941 mg/L was measured at the Cetina Radmanove Mlinice during 2007. The highest concentration for NO3–N of 0.916 mg/L was measured at the same sampling site. According to the investigations of the water quality of the Cetina springs and tributaries, the bacteriological most polluted river spring is Kosinac, and the bacteriological most polluted river tributary is Grab. With reference to the water quality in the Cetina storage reservoirs, it may be concluded that the lowest quality standard has been found within the Pran?evi?i storage reservoir regarding nitrogen compounds and phosphorus concentration levels.  相似文献   
5.
Isotope parameters (δ(13)C(honey), δ(13)C(protein), δ(15)N) were determined for 271 honey samples of 7 types (black locust, multifloral, lime, chestnut, forest, spruce, and fir honeys) from 4 natural geographical regions of Slovenia. Carbon and nitrogen stable isotope ratios were measured to elucidate the applicability of this method in the identification of the botanical and geographical origin of honey and in honey adulteration. Only 2.2% of the samples were adulterated according to the internal standard carbon isotope ratio analysis method. Botanical origin did not have any major influence on the honey isotope profiles; only black locust honey showed higher δ(13)C values. Some differences were seen across different production years, indicating that the influence of season should be further tested. Statistical and multivariate analyses demonstrated differences among honeys of various geographical origins. Those from the Alpine region had low δ(13)C (-26.0‰) and δ(15)N values (1.1‰); those from the Mediterranean region, high δ(13)C (-24.6‰) and medium δ(15)N values (2.2‰); those from the Pannonian region, medium δ(13)C (-25.6‰) and high δ(15)N value (3.0‰); and those from the Dinaric region, medium δ(13)C (-25.7‰) and low δ(15)N values (1.4‰).  相似文献   
6.
The authenticity and geographical origin of wines produced in Slovenia were investigated by a combination of IRMS and SNIF-NMR methods. A total of 102 grape samples of selected wines were carefully collected in three different wine-growing regions of Slovenia in 1996, 1997, and 1998. The stable isotope data were evaluated using principal component analysis (PCA) and linear discriminant analysis (LDA). The isotopic ratios to discriminate between coastal and continental regions are the deuterium/hydrogen isotopic ratio of the methylene site in the ethanol molecule (D/H)(II) and delta(13)C values; including also delta(18)O values in the PCA and LDA made possible separation between the two continental regions Drava and Sava. It was found that delta(18)O values are modified by the meteorological events during grape ripening and harvest. The usefulness of isotopic parameters for detecting adulteration or watering and to assess the geographical origin of wines is improved only when they are used concurrently.  相似文献   
7.

Introduction   

Roe deer (Capreolus capreolus) browsing pressure on vegetative regeneration of Turkey oak (Quercus cerris) and chestnut (Castanea sativa) and roe deer use of coppiced areas were investigated.  相似文献   
8.
Stable isotope composition of carbon and nitrogen in the sediment and pore water of a eutrophic freshwater lake was studied. Based on changes in the δ11C and δ15N values of dissolved components and sediment fraction. possible processes involved in the decomposition of sedimentary organic matter are outlined. The relative importance of acetate fermentation and CO2 reduction was estimated using known mathematical models, and ammonia assimilation by methanogenic bacteria is hypothesised to be the main process governing the isotope fractionation of dissolved nitrogen in pore water.  相似文献   
9.
10.

Purpose

The objective of this study is to estimate the contribution of various sources that influence soil CO2 concentrations in calcareous grassland.

Materials and methods

The research was performed at the Podgorski Kras plain (45?°33?? N, 13?°55?? E, 400?C430?m.a.s.l.) in the sub-Mediterranean region of Slovenia (SW Slovenia), where many meadows and pastures have been abandoned. In parallel to the measurement of soil respiration R s, soil gas was sampled for stable isotope analysis. Samples were taken biweekly at two sites, Grassland and Invaded, from July 2008 until November 2010. In addition, daily variations in concentration and stable isotope composition of soil CO2 were determined in May 2009. The partitioning of soil CO2 concentrations was performed using stable isotope mass balance calculation.

Results and discussion

The concentration and isotope composition of soil CO2 exhibited similar seasonal variations at both sites. Lower ??13CCO2 values, ranging from ?28.2 to ?15.2 ??, which occurred during warm periods and higher values, up to ?12.1 ??, were typical of cold winter periods, from December to March. Organic sources were estimated to constitute between 78 and 99?% of total soil CO2 during warmer periods from May until October. This contribution was lower during the winter, ranging from 46 to 77?%. In winter, the atmospheric component to soil CO2 dominated, constituting up to 60?%. On average, the inorganic contribution was estimated to comprise 12?% of the soil CO2 at all sampling locations. The contribution of this source to soil CO2 concentration, at up to 41?%, was highest in Grassland during the growing season. The inorganic source of soil CO2 was also an important component during daily variations. The highest contribution was observed during the day, in parallel to the highest respiration rates.

Conclusions

The inorganic pool is shown to be an important part of soil CO2 in calcareous areas and should be considered as equal to organic CO2 as a source in soil CO2 partitioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号