首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3126篇
  免费   314篇
林业   203篇
农学   124篇
基础科学   20篇
  502篇
综合类   203篇
农作物   173篇
水产渔业   314篇
畜牧兽医   1577篇
园艺   88篇
植物保护   236篇
  2024年   9篇
  2023年   55篇
  2022年   95篇
  2021年   167篇
  2020年   161篇
  2019年   202篇
  2018年   187篇
  2017年   166篇
  2016年   175篇
  2015年   114篇
  2014年   156篇
  2013年   169篇
  2012年   268篇
  2011年   275篇
  2010年   134篇
  2009年   130篇
  2008年   169篇
  2007年   143篇
  2006年   144篇
  2005年   88篇
  2004年   95篇
  2003年   83篇
  2002年   57篇
  2001年   32篇
  2000年   27篇
  1999年   18篇
  1998年   18篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1969年   2篇
  1967年   3篇
排序方式: 共有3440条查询结果,搜索用时 0 毫秒
1.
Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.  相似文献   
2.
优化蛋白质营养不再仅仅是对日粮进行大致的氨基酸平衡。蛋白质的形式对猪的健康和生长会产生长远的影响。  蛋白质摄入量是生长猪营养中的一个基本要素。要提高瘦肉生长率,就需要平衡良好的氨基酸以供蛋白质合成之用,这些氨基酸需要以一定的形式通过日粮来提供。现在能够对饲料进行精确的分析,并且有来源可靠的合成氨基酸,已经为猪的蛋白质营养提供了坚实的基础。然而,有时候这会导致过量氮的排泄,因为并非提供的所有的蛋白质都会被猪吸收。过量氮的排出,不但会造成浪费,而且还会对环境造成污染。近年来,新的证据表明,单独提供氨基酸可能…  相似文献   
3.
The effects of growth and leaf temperature on photosynthesis were evaluated in sweet orange seedlings ( Citrus sinensis cv. Pera) infected with Xylella fastidiosa (the bacterium that causes citrus variegated chlorosis, CVC). Measurements of leaf gas exchange and chlorophyll  a fluorescence were taken at leaf temperatures of 25, 30, 35 and 40°C in healthy and infected (without visible symptoms) seedlings submitted to two temperature regimes (25/20 or 35/20°C, day/night), not simultaneously. The CO2 assimilation rates ( A ) and stomatal conductance ( g s) were higher in healthy plants in both temperature regimes. Values for A and g s of infected and healthy plants were higher in the 35/20°C regime, decreasing with leaf temperature increase. In addition, differences between healthy and infected plants were higher at 35/20°C, while no differences in chlorophyll  a fluorescence parameters were observed except for potential quantum efficiency of photosystem II, which was higher in infected plants. Low A values in infected plants were caused by low g s and probably by biochemical damage to photosynthesis. The high alternative electron sink of infected plants was another effect of reduced A . Both high growth and high leaf temperatures increased differences in A between healthy and infected plants. Therefore this feature may be partially responsible for lower growth and/or productivity of CVC-affected plants in regions with high air temperature.  相似文献   
4.
5.
The COVID-19 pandemic presents a continued public health challenge. Veterinary diagnostic laboratories in the United States use RT-rtPCR for animal testing, and many laboratories are certified for testing human samples; hence, ensuring that laboratories have sensitive and specific SARS-CoV2 testing methods is a critical component of the pandemic response. In 2020, the FDA Veterinary Laboratory Investigation and Response Network (Vet-LIRN) led an interlaboratory comparison (ILC1) to help laboratories evaluate their existing RT-rtPCR methods for detecting SARS-CoV2. All participating laboratories were able to detect the viral RNA spiked in buffer and PrimeStore molecular transport medium (MTM). With ILC2, Vet-LIRN extended ILC1 by evaluating analytical sensitivity and specificity of the methods used by participating laboratories to detect 3 SARS-CoV2 variants (B.1; B.1.1.7 [Alpha]; B.1.351 [Beta]) at various copy levels. We analyzed 57 sets of results from 45 laboratories qualitatively and quantitatively according to the principles of ISO 16140-2:2016. More than 95% of analysts detected the SARS-CoV2 RNA in MTM at ≥500 copies for all 3 variants. In addition, for nucleocapsid markers N1 and N2, 81% and 92% of the analysts detected ≤20 copies in the assays, respectively. The analytical specificity of the evaluated methods was >99%. Participating laboratories were able to assess their current method performance, identify possible limitations, and recognize method strengths as part of a continuous learning environment to support the critical need for the reliable diagnosis of COVID-19 in potentially infected animals and humans.  相似文献   
6.
7.
Seasonal speedup along the western flank of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
It has been widely hypothesized that a warmer climate in Greenland would increase the volume of lubricating surface meltwater reaching the ice-bedrock interface, accelerating ice flow and increasing mass loss. We have assembled a data set that provides a synoptic-scale view, spanning ice-sheet to outlet-glacier flow, with which to evaluate this hypothesis. On the ice sheet, these data reveal summer speedups (50 to 100%) consistent with, but somewhat larger than, earlier observations. The relative speedup of outlet glaciers, however, is far smaller (<15%). Furthermore, the dominant seasonal influence on Jakobshavn Isbrae's flow is the calving front's annual advance and retreat. With other effects producing outlet-glacier speedups an order of magnitude larger, seasonal melt's influence on ice flow is likely confined to those regions dominated by ice-sheet flow.  相似文献   
8.
9.
The cation exchange capacity (CEC) of a soil depends on the type and amount of both mineral and organic surfaces. Previous studies that have sought to determine the relative contribution of organic matter to total soil CEC have not addressed differences in soil organic matter (SOM) composition that could lead to differences in CEC. The objectives of this study were (1) to compare the CEC of two distinct SOM pools, the “light fraction (LF)” composed of particulate plant, animal, and microbial debris, and the “heavy fraction (HF)” composed of mineral-bound organic matter; and (2) to examine the effects of differences in aboveground vegetation on CEC. Soil samples were collected from four paired grassland/conifer sites within a single forested area and density fractionated. LF CEC was higher in conifer soils than in grassland soils, but there was no evidence of an effect of vegetation on CEC for the HF or bulk soil. LF CEC (but not HF CEC) correlated well with the C concentration in the fraction. The mean CEC of both fractions (per kg fraction) exceeded that of the bulk soil; thus, when the LF and HF CEC were combined mathematically by weighting values for each fraction in proportion to dry mass, the resulting value was nearly twice the measured CEC of bulk soil. On a whole soil basis, the HF contributed on average 97% of the CEC of the whole soil, although this conclusion must be tempered given the inflation of CEC values by the density fractionation procedure.  相似文献   
10.
This study describes the purification of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effects on the larval development of Callobruchus maculatus and Anagasta kuehniella. The lectin (KpLec) was characterized and isolated by gel filtration, affinity column, and reverse phase chromatography. SDS-PAGE indicated that this lectin is a dimer composed of subunits of 22 and 44 kDa. The N terminus exhibited 40% similarity with Urtiga dioica agglutinin. KpLec was tested for anti-insect activity against C. maculatus and A. kuehniella. With regard to C. maculatus, an artificial diet containing 0.7 and 1% KpLec produced LD(50) and ED(50) value, respectively. However, for A. kuenhiella, an artificial diet containing 0.65% KpLec produced an LD(50), whereas 0.2% KpLec produced an ED(50). The transformation of genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号