首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础科学   4篇
  2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Evaluation of mulched drip irrigation for cotton in arid Northwest China   总被引:1,自引:0,他引:1  
Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control experiments, experiments with deficit irrigation during one crop growth stage, and alternative irrigation schemes in which freshwater was used during one growth stage and relatively saline water in the others. The average cotton yield over 3 years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. Crop sensitivities to water stress during the different growth stages ranged from early flowering-belling (most sensitive) > seedling > budding > late flowering-belling (least sensitive), while sensitivities to salt stress ranged from late flowering-belling > budding > seedling > early flowering-belling. Although mulched drip irrigation during the growing season caused an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts to below background levels. Numerical simulations, based on the 3-year experiments and extended by another 20 years, suggest that mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with freshwater after harvesting is a sustainable irrigation practice that should not lead to soil salinization.  相似文献   
2.
Numerical investigation of irrigation scheduling based on soil water status   总被引:2,自引:1,他引:1  
Improving the sustainability of irrigation systems requires the optimization of operational parameters such as irrigation threshold and irrigation amount. Numerical modeling is a fast and accurate means to optimize such operational parameters. However, little work has been carried out to investigate the relationship between irrigation scheduling, irrigation threshold, and irrigation amount. Herein, we compare the results of HYDRUS 2D/3D simulations with experimental data from triggered drip irrigation, and optimize operational parameters. Two field experiments were conducted, one on loamy sand soil and one on sandy loam soil, to evaluate the overall effects of different potential transpiration rates and irrigation management strategies, on the triggered irrigation system. In both experiments, irrigation was controlled by a closed loop irrigation system linked to tensiometers. Collected experimental data were analyzed and compared with HYDRUS 2D/3D simulations. A system-dependant boundary condition, which initiates irrigation whenever the matric head at a predetermined location drops below a certain threshold, was implemented into the code. The experimental model was used to evaluate collected experimental data, and then to optimize the operational parameters for two hypothetical soils. The results show that HYDRUS 2D/3D predictions of irrigation events and matric heads are in good agreement with experimental data, and that the code can be used to optimize irrigation thresholds and water amounts applied in an irrigation episode to increase the efficiency of water use.  相似文献   
3.
4.
5.
6.
Water scarcity and increased frequency of drought conditions, resulting from erratic weather attributable to climatic change or alterations in historical weather patterns, have caused greater scrutiny of irrigated agriculture's demand on water resources. The traditional guidelines for the calculation of the crop-specific leaching requirement (LR) of irrigated soils have fallen under the microscope of scrutiny and criticism because the commonly used traditional method is believed to erroneously estimate LR due to its assumption of steady-state flow and disregard for processes such as salt precipitation and preferential flow. An over-estimation of the LR would result in the application of excessive amounts of irrigation water and increased salt loads in drainage systems, which can detrimentally impact the environment and reduce water supplies. The objectives of this study are (i) to evaluate the appropriateness of the traditional steady-state method for estimating LR in comparison to the transient method and (ii) to discuss the implications these findings could have on irrigation guidelines and recommendations, particularly with respect to California's Imperial Valley. Steady-state models for calculating LR including the traditional model, which is an extension of the original U.S. Salinity Laboratory LR model, WATSUIT model, and water-production-function model were compared to transient models including TETrans and UNSATCHEM. The calculated LR was lower when determined using a transient approach than when using a steady-state approach. Transient conditions and the influence of preferential flow did not have as significant an effect on lowering the LR as salt precipitation for a representative study of the Imperial Valley using Colorado River water (EC = 1.23 dS/m) for irrigation. A valley-wide LR of 0.08 for a crop rotation of alfalfa/alfalfa/alfalfa/alfalfa/wheat/lettuce, as calculated by both WATSUIT and UNSATCHEM, was concluded to be the most reasonable estimate for the entire Imperial Valley as compared to a LR of 0.13 by the commonly used traditional method. The reduced LR for the Imperial Valley would result in a diminished drainage volume of approximately 1.23 × 108 m3 (i.e., 100,000 ac-ft). The most significant conclusion derived from the comparison is that the use of the traditional steady-state model for estimating LR needs to be reevaluated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号