首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  7篇
农作物   1篇
  2017年   2篇
  2012年   2篇
  2010年   1篇
  1997年   3篇
排序方式: 共有8条查询结果,搜索用时 234 毫秒
1
1.
Pore waters, extracted monthly from short cores at two sedimentologically and biologically different locations (AA1 and F) in the Gulf of Trieste (Northern Adriatic), were analyzed for NH4 +, NO3 +, PO4 3+, Si(OH)4, DIC and periodically for DOC, DON and DOP. Nutrient concentrations were used to model vertical profiles using a diffusion-reaction model which included the macrofaunal influence on sediment-water exchange rates. Winter nutrient profiles showed nearly an exponential increase, or decrease in the case of NO3 +, in nutrient concentrations with depth while the profiles from other seasons exhibited concentration maximum at 3–6 cm, a minimum around 8–10 cm, and then, except for NO3 +, a gradual increase or constant values. This vertical distribution is attributed to seasonal variations in the benthic infauna activity, mostly composed of polychaetes and bivalves and concentrated in the top 4–5 cm, being less active during the winter. The vertical profiles of DOC and DON showed the vertical distribution described above in all periods, while DOP was similar to that of PO4 3. The comparison of modelled fluxes of nutrients across the sediment-water interface at the location AA1 and those measured usingin situ benthic chamber showed quite good agreement for NH4 + and PO4 3, fluxes but not for NO, and Si(OH)4. Discrepancies could be caused by a topography effect and for Si(OH)4 by an additional dissolution of the solid phase balancing the diffusive loss into burrows and lessening the effect of bioturbation.  相似文献   
2.

Purpose

Concentrations and transformations of mercury were measured in river, estuarine, and marine sediments to determine factors affecting the fate of mercury entering the northern Adriatic Sea.

Materials and methods

Radiotracer methodology was used to compare rates of mercury methylation (203Hg), MeHg demethylation (14C), and sulfate reduction (35S) in sediment depth profiles to concentrations of total and dissolved mercury species in the lower freshwater region of the Isonzo River, the coastal lagoons, and in the Gulf of Trieste, northern Adriatic Sea.

Results and discussion

Mercury was readily methylated and demethylated in all sediments, but the relative activity of these processes varied greatly with location. Methylation activity increased greatly from freshwater to the marine regions; however, demethylation was extremely high in the estuarine and lagoon sites. Ratios of methylation to demethylation were low in these coastal sites but increased further offshore in the gulf, which agreed with increased ratios of MeHg to total Hg (%MeHg) in gulf sediments. Comparisons of microbial activities indicated that sulfate reduction strongly controlled both methylation and demethylation. However, Hg methylation in coastal lagoon sediments was controlled by rapid demethylation and the bioavailability of Hg that was affected by Hg adsorption and precipitation. Methylation in offshore marine sites correlated with sulfate reduction but not the partitioning of Hg between pore water and solid phases. The decrease in sulfide production offshore exacerbated Hg methylation.

Conclusions

The freshwater to marine gradient in the Idrija/So?a/Isonzo/Adriatic region is dynamic, exhibiting horizontally variable rates of microbial activities and Hg transformations that create “hot spots” of MeHg accumulation that are controlled differently in each region.
  相似文献   
3.
Benthic fluxes of dissolved inorganic N, Si and P nutrients, alkalinity, dissolved inorganic C (DIC), and O2 from sediments in the Gulf of Trieste (northern Adriatic, Italy) were measured monthly in the period September 1995 - August 1996 using in situ incubated light benthic chambers. The highest efluxes of DIC, NH4+, PO43-, Si(OH)4, and NO3- influxes encountered in late summer - early autumn were the consequence of degradation of benthic microalgae, and in autumn mostly of sedimented phytoplankton. High NO3- efflux was observed in spring. Only NH4+ and Si(OH)4 fluxes were significantly correlated with temperature. This correlation suggests that the rate of downward input and the quality and quantity of sedimentary organic matter (autochthonous and allochthonous) were superimposed on the temperature fluctuations. High DIC, NH4+ and Si(OH)4 effluxes observed in July 1996 were due to the late spring - early summer degradation of sedimentary organic matter produced by benthic microalgae, while the autumn phytoplankton bloom was quickly reflected in enhanced benthic fluxes due to higher temperature. Significant correlations between NH4+, PO43- and Si(OH)4 fluxes suggested their parallel regeneration and utilization at the sediment-water interface. The nutrient fluxes were linked to O2 consumption, suggesting that aerobic oxidation processes were important at the sediment-water interface in the Gulf. The N, P and Si nutrients released from sediment pore waters are probably utilized in benthic microalgal and bottom-water primary production. This indicates that pelagic and benthic communities in the central part of the Gulf of Trieste function relatively independently of each other.  相似文献   
4.

Purpose

In summer 2007, biweekly benthic fluxes of the biogenic elements carbon (C), nitrogen (N), silicon (Si), and phosphorus (P) were studied in the Se?ovlje saltern (salt-making facility) in the northern Adriatic Sea, Slovenia in order to determine the impact of stromatolite (??petola??) on the geochemical properties of saltern sediments.

Materials and methods

The brine and pore waters were analyzed for salinity, NH 4 + , NO 3 ? , PO 4 3? , SiO 4 4? , total dissolved nitrogen, total dissolved phosphorus, and fluorescent dissolved organic matter. The sediment was analyzed for organic carbon (OC), total nitrogen (TN), total and organic phosphorus (OP), and biogenic Si concentrations, as well as values of ?? 13COC and ?? 15NTN.

Results and discussion

Nutrient concentrations in brine water increased along the salinity gradient due to different processes, such as the evaporative concentrations of seawater, bacterial activity, more pronounced transformation and degradation of organic matter, and regeneration of nutrients. The petola from the Se?ovlje saltern, which is predominately composed of cyanobacterial and diatom communities, develops during the early evaporation stage and survives during high salinity and halite crystallization. Nitrogen fixation and P removal were the principal biogeochemical processes controlling dissolved inorganic N and P concentrations. At higher salinities, N limitation was more important. Microbes decomposed at higher salinities, and the remineralized N and P nutrients were released from surface pore waters to the brine. OP remineralization was also an important process influencing the distribution of PO 4 3? concentrations in pore waters deeper in the sediments. The increasing SiO 4 4? concentrations with increasing salinity in the brine waters were due to dissolution of diatom frustules, while the decrease in pore water SiO 4 4? was probably the consequence of microbial uptake.

Conclusions

This study provides a better understanding of nutrient cycling and the geochemical processes in the Se?ovlje saltern.  相似文献   
5.
The processes regulating the concentration and isotopic composition of dissolved inorganic carbon (DIC) in pore water were investigated in three different parts of Lake Bled. It was found that the isotopic composition of dissolved inorganic carbon (DIC) is strongly influenced by methanogenesis. Simple diagenetic model reproduces the observed carbon-isotope profiles and the DIC concentration data resonably well in investigated parts. This findings lead us to conclude that the majority of processes affecting DIC are taken into account in the model.  相似文献   
6.
7.

Purpose

The Gulf of Trieste (northern Adriatic Sea) is an example of a coastal environment contaminated with mercury (Hg). Contamination is a consequence of nearly 500?years of activity at the Idrija Mine (western Slovenia), which is the second largest Hg mine in the world. Oxygen depletion can be common in the Gulf of Trieste due to late summer stratification of the water column and accumulation of labile organic matter. Since changing redox conditions can have an impact on Hg transformations, we studied the effect of oxygen depletion, in parallel with sulphide, iron (Fe), manganese (Mn), fluorescent dissolved organic matter (FDOM) and nitrogen (N) and phosphorus (P) availability, on total Hg and methylmercury (MeHg) fluxes from sediments.

Materials and methods

Pore water concentrations and benthic fluxes of total dissolved Hg and MeHg were studied in situ and in microcosm laboratory experiments using flux chambers encompassing three different stages: oxic, anoxic and reoxidation.

Results and discussion

Our experiments showed that in the oxic stage there were small effluxes of MeHg to the water column, which increased in the anoxic stage and dropped rapidly in a subsequent reoxic stage, showing influx. Our results support the hypothesis that MeHg desorption from reduced metal hydroxides under anoxic conditions, and co-precipitation with Fe-oxides and MeHg demethylation in the reoxidation stage, may play a major role in determining MeHg benthic fluxes. For Hg and MeHg, it appears that there is little relationship between their pore water distribution and flux and that of FDOM, i.e. humics.

Conclusions

The results indicate that there was no significant difference in Hg and MeHg pore water levels and their benthic fluxes between the contaminated northern and central parts of the Gulf of Trieste and the pristine southern part. This suggests that shallow and stratified coastal marine environments, in general, represent areas with a risk of high benthic release of toxic MeHg.  相似文献   
8.
The key organic constituents of marine macroaggregates (macrogels) of prevalently phytoplankton origin, periodically occurring in the northern Adriatic Sea, are proteins, lipids and especially polysaccharides. In this article, the reactivity of various macroaggregate fractions in relation to their composition in order to decode the potentially »bioavailable« fractions is summarized and discussed. The enzymatic hydrolysis of the macroaggregate matrix, using α-amylase, β-glucosidase, protease, proteinase and lipase, revealed the simultaneous degradation of polysaccharides and proteins, while lipids seem largely preserved. In the fresh surface macroaggregate samples, a pronounced degradation of the α-glycosidic bond compared to β-linkages. Degradation of the colloidal fraction proceeded faster in the higher molecular weight (MW) fractions. N-containing polysaccharides can be important constituents of the higher MW fraction while the lower MW constituents can mostly be composed of poly- and oligosaccharides. Since the polysaccharide component in the higher MW fraction is more degradable compared to N-containing polysaccharides, the higher MW fraction represents a possible path of organic nitrogen preservation. Enzymatic hydrolysis, using α-amylase and β-glucosidase, revealed the presence of α- and β-glycosidic linkages in all fractions with similar decomposition kinetics. Our results indicate that different fractions of macroaggregates are subjected to compositional selective reactivity with important implications for macroaggregate persistence in the seawater column and deposition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号